Stevioside, extracted from the leaves of Stevia rebaudiana Bertoni, is a natural, high intensity, lowcaloric sweetener with wide therapeutic activities. Conventional stevioside extraction methodologies involve the use...Stevioside, extracted from the leaves of Stevia rebaudiana Bertoni, is a natural, high intensity, lowcaloric sweetener with wide therapeutic activities. Conventional stevioside extraction methodologies involve the use of non-green solvents, supercritical fluids, microwaves, etc., however, all these processes are expensive, time-consuming and eco-unfriendly. Therefore an alternative process is desired for the isolation of stevioside. In this study, a novel enzyme-mediated extraction (EME) method has been developed. The dry stevia leaves were pre-treated with hydrolytic enzymes aided by transition metal salts (FeCl3). This was followed by pressurized hot water extraction (PHWE) to release stevioside. The crude extract was purified and clarified through multi-stage membrane filtration. The results confirm that metal salt-assisted cellulase pre-treatment enhanced the yield of stevioside to 72%, with 98% purity, which was higher in comparison to existing methods. Thus, the methodology developed establishes a simple, “green”, enzyme-mediated process for the efficient isolation of stevioside under economical and eco-friendly conditions.展开更多
文摘Stevioside, extracted from the leaves of Stevia rebaudiana Bertoni, is a natural, high intensity, lowcaloric sweetener with wide therapeutic activities. Conventional stevioside extraction methodologies involve the use of non-green solvents, supercritical fluids, microwaves, etc., however, all these processes are expensive, time-consuming and eco-unfriendly. Therefore an alternative process is desired for the isolation of stevioside. In this study, a novel enzyme-mediated extraction (EME) method has been developed. The dry stevia leaves were pre-treated with hydrolytic enzymes aided by transition metal salts (FeCl3). This was followed by pressurized hot water extraction (PHWE) to release stevioside. The crude extract was purified and clarified through multi-stage membrane filtration. The results confirm that metal salt-assisted cellulase pre-treatment enhanced the yield of stevioside to 72%, with 98% purity, which was higher in comparison to existing methods. Thus, the methodology developed establishes a simple, “green”, enzyme-mediated process for the efficient isolation of stevioside under economical and eco-friendly conditions.