Background: The initial intestinal microbiota acquired from different sources has profound impacts on animal health and productivity. In modern poultry production practices, the source(s) of the establishing microbes ...Background: The initial intestinal microbiota acquired from different sources has profound impacts on animal health and productivity. In modern poultry production practices, the source(s) of the establishing microbes and their overall contribution during development of gastrointestinal tract communities are still unclear. Using fertilized eggs from two independent sources, we assessed the impact of eggshell-and environmental-associated microbial communities on the successional processes and bacterial community structure throughout the intestinal tract of chickens for up to 6 weeks post-hatch.Results: Culturing and sequencing techniques identified a viable, highly diverse population of anaerobic bacteria on the eggshell. The jejunal, ileal, and cecal microbial communities for the egg-only, environment-only, and conventionally raised birds generally displayed similar successional patterns characterized by increasing community richness and evenness over time, with strains of Enterococcus, Romboutsia, and unclassified Lachnospiraceae abundant for all three input groups in both trials. Bacterial community structures differed significantly based on trial and microbiota input with the exception of the egg-exposed and conventional birds in the jejunum at week 1 and the ileum at week 6. Cecal community structures were different based on trial and microbiota input source, and cecal short-chain fatty acid profiles at week 6 highlighted functional differences as well.Conclusion: We identified distinct intestinal microbial communities and differing cecal short-chain fatty acid profiles between birds exposed to the microbiota associated with either the eggshell or environment, and those of conventionally hatched birds. Our data suggest the eggshell plays an appreciable role in the development of the chicken intestinal microbiota, especially in the jejunum and ileum where the community structure of the eggshellonly birds was similar to the structure of conventionally hatched birds. Our data identify a complex interplay between 展开更多
Re-vegetation plays a fundamental role for erosion control and plant recovery in lands affected by gully erosion. Bioengineered practices facilitate the gullies rehabilitation. Objectives of the research were: 1) Iden...Re-vegetation plays a fundamental role for erosion control and plant recovery in lands affected by gully erosion. Bioengineered practices facilitate the gullies rehabilitation. Objectives of the research were: 1) Identify taxonomically the pioneer vegetation on each gully section; 2) Characterize vegetation distribution preferences and 3) Assess structural/functional traits to recognize erosion control key species. Bioengineering was applied in a watershed belonging to Sierra Madre del Sur, at Oaxaca, Mexico, on eight gullies, with local support and minimal investment. "La Mixteca" is a poor ecological and socio-economic region, comparable to other regions of the world. The Initial Floristic Composition(IFC) inventory is the baseline of the successional process. The transect method was used to determine the colonization of species. Cover abundance of registered species was estimated using the semi-quantitative scale of Braun-Blanquet. This procedure was repeated in five different positions(floor, hillslopes and tops), in the cross section of the gully. Throughcorrespondence analysis and clustering, the distribution of species was analyzed. Adequate responses were obtained in soil retention(quantity) and plant cover(existence and diversity); as measurable indicators of the bioengeneering works efficiency. Occupation of soil by native species from the Tropical Deciduous Forest was favored using live barriers. We detected species guilds with spatial distribution preferences in the gullies cross section. Plant cover characterization includes: native colonizer species, herbaceous, shrubby and trees of the forest community bordering the gully area, with cover abundance and structural/functional traits, useful to protect degraded areas. This spatial occupation process of plants responds to a secondary succession in gullies, where the proposed IFC model is correctly represented through bioengineering. Natural establishment of plants was successful by traits of species such as extensive root system and sexual/vegetative r展开更多
Probiotics participate in various physiological activities and contribute to body health.However,their viability and bioefficacy are adversely affected by gastrointestinal harsh conditions,such as gastric acid,bile sa...Probiotics participate in various physiological activities and contribute to body health.However,their viability and bioefficacy are adversely affected by gastrointestinal harsh conditions,such as gastric acid,bile salts and various enzymes.Fortunately,encapsulation based on various nanomaterials shows tremendous potential to protect probiotics.In this review,we introduced some novel encapsulation technologies involving nanomaterials in view of predesigned stability and viability,selective adhesion,smart release and colonization,and efficacy exertion of encapsulated probiotics.Furthermore,the interactions between encapsulated probiotics and the gastrointestinal tract were summarized and analyzed,with highlighting the regulatory mechanisms of encapsulated probiotics on intestinal mechanical barrier,chemical barrier,biological barrier and immune barrier.This review would benefit the food and pharmaceutical industries in preparation and utilization of multifunctional encapsulated probiotics.展开更多
基金supported by U.S. Department of Agriculture-Agricultural Research Service (USDA-ARS) funds。
文摘Background: The initial intestinal microbiota acquired from different sources has profound impacts on animal health and productivity. In modern poultry production practices, the source(s) of the establishing microbes and their overall contribution during development of gastrointestinal tract communities are still unclear. Using fertilized eggs from two independent sources, we assessed the impact of eggshell-and environmental-associated microbial communities on the successional processes and bacterial community structure throughout the intestinal tract of chickens for up to 6 weeks post-hatch.Results: Culturing and sequencing techniques identified a viable, highly diverse population of anaerobic bacteria on the eggshell. The jejunal, ileal, and cecal microbial communities for the egg-only, environment-only, and conventionally raised birds generally displayed similar successional patterns characterized by increasing community richness and evenness over time, with strains of Enterococcus, Romboutsia, and unclassified Lachnospiraceae abundant for all three input groups in both trials. Bacterial community structures differed significantly based on trial and microbiota input with the exception of the egg-exposed and conventional birds in the jejunum at week 1 and the ileum at week 6. Cecal community structures were different based on trial and microbiota input source, and cecal short-chain fatty acid profiles at week 6 highlighted functional differences as well.Conclusion: We identified distinct intestinal microbial communities and differing cecal short-chain fatty acid profiles between birds exposed to the microbiota associated with either the eggshell or environment, and those of conventionally hatched birds. Our data suggest the eggshell plays an appreciable role in the development of the chicken intestinal microbiota, especially in the jejunum and ileum where the community structure of the eggshellonly birds was similar to the structure of conventionally hatched birds. Our data identify a complex interplay between
基金World Wildlife Fund (WWF) for providing financial support for the conduction of the research through Oaxaca Community Foundationthe National Council for Science and Technology supported the first author through grant for two years
文摘Re-vegetation plays a fundamental role for erosion control and plant recovery in lands affected by gully erosion. Bioengineered practices facilitate the gullies rehabilitation. Objectives of the research were: 1) Identify taxonomically the pioneer vegetation on each gully section; 2) Characterize vegetation distribution preferences and 3) Assess structural/functional traits to recognize erosion control key species. Bioengineering was applied in a watershed belonging to Sierra Madre del Sur, at Oaxaca, Mexico, on eight gullies, with local support and minimal investment. "La Mixteca" is a poor ecological and socio-economic region, comparable to other regions of the world. The Initial Floristic Composition(IFC) inventory is the baseline of the successional process. The transect method was used to determine the colonization of species. Cover abundance of registered species was estimated using the semi-quantitative scale of Braun-Blanquet. This procedure was repeated in five different positions(floor, hillslopes and tops), in the cross section of the gully. Throughcorrespondence analysis and clustering, the distribution of species was analyzed. Adequate responses were obtained in soil retention(quantity) and plant cover(existence and diversity); as measurable indicators of the bioengeneering works efficiency. Occupation of soil by native species from the Tropical Deciduous Forest was favored using live barriers. We detected species guilds with spatial distribution preferences in the gullies cross section. Plant cover characterization includes: native colonizer species, herbaceous, shrubby and trees of the forest community bordering the gully area, with cover abundance and structural/functional traits, useful to protect degraded areas. This spatial occupation process of plants responds to a secondary succession in gullies, where the proposed IFC model is correctly represented through bioengineering. Natural establishment of plants was successful by traits of species such as extensive root system and sexual/vegetative r
基金supported by the National Key Research and Development Program(2019YFC1606704)the Key Research and Development Program of Shaanxi Province(2022NY-013)+1 种基金National Natural Science Foundation of China(31801653)the Natural Science Foundation of Shaanxi Province(2019JQ-722).
文摘Probiotics participate in various physiological activities and contribute to body health.However,their viability and bioefficacy are adversely affected by gastrointestinal harsh conditions,such as gastric acid,bile salts and various enzymes.Fortunately,encapsulation based on various nanomaterials shows tremendous potential to protect probiotics.In this review,we introduced some novel encapsulation technologies involving nanomaterials in view of predesigned stability and viability,selective adhesion,smart release and colonization,and efficacy exertion of encapsulated probiotics.Furthermore,the interactions between encapsulated probiotics and the gastrointestinal tract were summarized and analyzed,with highlighting the regulatory mechanisms of encapsulated probiotics on intestinal mechanical barrier,chemical barrier,biological barrier and immune barrier.This review would benefit the food and pharmaceutical industries in preparation and utilization of multifunctional encapsulated probiotics.