期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
集合数据同化方法的发展与应用概述 被引量:9
1
作者 张学峰 黄大吉 +1 位作者 章本照 童元正 《海洋学研究》 北大核心 2007年第1期88-94,共7页
集合数据同化方法具有简洁概念化的公式和应用起来相对容易等优点,因此,它们获得了普及性的应用;近10年来集合数据同化方法已经得到了快速的发展。综述了包括集合卡尔曼滤波(EnKF,Ensemble Kalman Filter)、集合卡尔曼平滑(EnKS,Ensembl... 集合数据同化方法具有简洁概念化的公式和应用起来相对容易等优点,因此,它们获得了普及性的应用;近10年来集合数据同化方法已经得到了快速的发展。综述了包括集合卡尔曼滤波(EnKF,Ensemble Kalman Filter)、集合卡尔曼平滑(EnKS,Ensemble Kalman Smoother)、集合方均根滤波(EnSRF,Ensemble Square-Root Filter)和减秩卡尔曼滤波(SEEK,Singular Evolutive Extended Kalman Filter)等集合数据同化方法的研究进展状况。通过与其它数据同化方法的对比,总结出了这些方法的特点,探讨了我国在集合数据同化方法研究中存在的问题并展望了该方法的研究和应用前景。 展开更多
关键词 数据同化 集合数据同化 ENKF EnKS EnSRF SEEK
下载PDF
Evaluation of the Historical Sampling Error for Global Models 被引量:2
2
作者 SHEN Si LIU Juan-Juan WANG Bin 《Atmospheric and Oceanic Science Letters》 CSCD 2015年第5期250-256,共7页
Various ensemble-based schemes are employed in data assimilation because they can use the ensemble to estimate the flow-dependent background error covariance. The most common way to generate the real-time ensemble is ... Various ensemble-based schemes are employed in data assimilation because they can use the ensemble to estimate the flow-dependent background error covariance. The most common way to generate the real-time ensemble is to use an ensemble forecast; however, this is very time-consuming. The historical sampling approach is an alternative way to generate the ensemble,by picking some snapshots from historical forecast series.With this approach, many ensemble-based assimilation schemes can be used in a deterministic forecast environment. Furthermore, considering the time that it saves, the method has the potential for operational application.However, the historical sampling approach carries with it a special kind of sampling error because, in a historical forecast, the way to integrate the ensemble members is different from the way to integrate the initial conditions at the analysis time(i.e., forcing and lateral boundary condition differences, and ‘warm start' or ‘cold start' differences). This study analyzes the results of an experiment with the Global Regional Assimilation Prediction System-Global Forecast System(GRAPES-GFS), to evaluate how the different integration configurations influence the historical sampling error for global models. The results show that the sampling error is dominated by diurnal cycle patterns as a result of the radiance forcing difference.Although the RMSEs of the sampling error are small, in view of the correlation coefficients of the perturbed ensemble, the sampling error for some variables on some levels(e.g., low-level temperature and humidity, stratospheric temperature and geopotential height and humidity), is non-negligible. The results suggest some caution must be applied, and advice taken, when using the historical sampling approach. 展开更多
关键词 ensemble-based data assimilation HISTORICAL sampli
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部