Using multidiscipline methodologies, the differences in preservation and enrichment mechanisms of organic matter (OM) in muddy sediment and mudstone are investigated. In clay fractions, concentrations of TOC and chlor...Using multidiscipline methodologies, the differences in preservation and enrichment mechanisms of organic matter (OM) in muddy sediment and mudstone are investigated. In clay fractions, concentrations of TOC and chloroform bitumen “A” are significantly higher than those in coarser fractions. This indicates that clay minerals (CM) play an important role in enriching OM. The content of chloroform bitumen “A” increases obviously in the clay fraction, which reveals that dissolvable OM is the main composition of coalesce with clay minerals. Furthermore, TG and DTA data show that OM enrichment mechanisms and preservation forms have multiplicity. Several exothermic peaks in the DTA curves demonstrate that muddy sediment and mudstone contain a number of bioclasts and amorphous OM besides dissolvable OM. Through analyzing with XRD and DTA after mudstone samples were pretreated, the conclusions can be arrived at. Firstly, CM interlayer space of XRD curves and exothermic peaks of DTA curves both change as temperature increases. Secondly, the changes of CM interlayer space and exothermic peaks are concordant and stable around 350°C. All these are the features that OM enters CM interlayers to form stable organo-clay complexes. Therefore, the combination format of OM with CM is not only surface adsorption, partial OM enters CM interlayers to form stable organo-clay complexes. Finally, through the research on OM preservation forms and enrichment mechanisms in muddy sediment and mudstone, the hydrocarbon-generation processes and the global carbon cycle and budget can be explained.展开更多
Analyses of trace elements of the Lower Palaeozoic carbonate rock strata in Beijing show that the contents of As, Hg, F increase from primary carbonate rocks to weathered carbonate rocks and from primary carbonate roc...Analyses of trace elements of the Lower Palaeozoic carbonate rock strata in Beijing show that the contents of As, Hg, F increase from primary carbonate rocks to weathered carbonate rocks and from primary carbonate rocks to the soil coexisting with carbonate rocks, but the distribution regularity of S is not obvious. In the whole weathered stages, the sorption of As is mainly affected by Fe2O3. In soil Fe2O3 is also the main affecting factor of Hg enrichment. The main existing forms of Hg in primary carbonate rocks should simply be physical adsorption, coprecipitation and false isomorphous form between surface of carbonate rock and Hg. In soil the enrichment of F has little relationship with sul-fides and Fe2O3. In primary carbonate rocks, F is mainly absorbed by sulfides and clay minerals, etc. Weathered samples have closer genetic relationships with primary carbonate rocks. This also implies that weathered carbonate rocks have the close existing forms to that of primary carbonate rocks. In primary carbonate rocks FeS2 and FeS are the main forms of S, and sulfides have fixation effect on some heavy metals, whereas in weathered carbonate rocks and soil the fixation effect is weakened.展开更多
基金Supported by the National Natural Science Foundation of China (Grant No. 40672085)China Petroleum and Chemical Corporation Project
文摘Using multidiscipline methodologies, the differences in preservation and enrichment mechanisms of organic matter (OM) in muddy sediment and mudstone are investigated. In clay fractions, concentrations of TOC and chloroform bitumen “A” are significantly higher than those in coarser fractions. This indicates that clay minerals (CM) play an important role in enriching OM. The content of chloroform bitumen “A” increases obviously in the clay fraction, which reveals that dissolvable OM is the main composition of coalesce with clay minerals. Furthermore, TG and DTA data show that OM enrichment mechanisms and preservation forms have multiplicity. Several exothermic peaks in the DTA curves demonstrate that muddy sediment and mudstone contain a number of bioclasts and amorphous OM besides dissolvable OM. Through analyzing with XRD and DTA after mudstone samples were pretreated, the conclusions can be arrived at. Firstly, CM interlayer space of XRD curves and exothermic peaks of DTA curves both change as temperature increases. Secondly, the changes of CM interlayer space and exothermic peaks are concordant and stable around 350°C. All these are the features that OM enters CM interlayers to form stable organo-clay complexes. Therefore, the combination format of OM with CM is not only surface adsorption, partial OM enters CM interlayers to form stable organo-clay complexes. Finally, through the research on OM preservation forms and enrichment mechanisms in muddy sediment and mudstone, the hydrocarbon-generation processes and the global carbon cycle and budget can be explained.
基金the National Basic Research Municipal Program of China (973 Pro-gram)(Grant No. 2006CB202201)Beijing Natural Science Foundation (Grant No. 8063032)
文摘Analyses of trace elements of the Lower Palaeozoic carbonate rock strata in Beijing show that the contents of As, Hg, F increase from primary carbonate rocks to weathered carbonate rocks and from primary carbonate rocks to the soil coexisting with carbonate rocks, but the distribution regularity of S is not obvious. In the whole weathered stages, the sorption of As is mainly affected by Fe2O3. In soil Fe2O3 is also the main affecting factor of Hg enrichment. The main existing forms of Hg in primary carbonate rocks should simply be physical adsorption, coprecipitation and false isomorphous form between surface of carbonate rock and Hg. In soil the enrichment of F has little relationship with sul-fides and Fe2O3. In primary carbonate rocks, F is mainly absorbed by sulfides and clay minerals, etc. Weathered samples have closer genetic relationships with primary carbonate rocks. This also implies that weathered carbonate rocks have the close existing forms to that of primary carbonate rocks. In primary carbonate rocks FeS2 and FeS are the main forms of S, and sulfides have fixation effect on some heavy metals, whereas in weathered carbonate rocks and soil the fixation effect is weakened.