期刊文献+
共找到7篇文章
< 1 >
每页显示 20 50 100
Predicting enhancer-promoter interaction from genomic sequence with deep neural networks 被引量:8
1
作者 Shashank Singh Yang Yang +1 位作者 Barnabas Poczos Jian Ma 《Frontiers of Electrical and Electronic Engineering in China》 CSCD 2019年第2期122-137,共16页
Background:In the human genome,distal enhancers are involved in regulating target genes through proximal promoters by forming enhancer-promoter interactions.Although recently developed high-throughput experimental app... Background:In the human genome,distal enhancers are involved in regulating target genes through proximal promoters by forming enhancer-promoter interactions.Although recently developed high-throughput experimental approaches have allowed us to recognize potential enhancer-promoter interactions genome-wide,it is still largely unclear to what extent the sequence-level information encoded in our genome help guide such interactions.Methods:Here we report a new computational method (named "SPEID") using deep learning models to predict enhancer-promoter interactions based on sequence-based features only,when the locations of putative enhancers and promoters in a particular cell type are given.Results:Our results across six different cell types demonstrate that SPEID is effective in predicting enhancerpromoter interactions as compared to state-of-the-art methods that only use information from a single cell type.As a proof-of-principle,we also applied SPEID to identify somatic non-coding mutations in melanoma samples that may have reduced enhancer-promoter interactions in tumor genomes.Conclusions^ This work demonstrates that deep learning models can help reveal that sequence-based features alone are sufficient to reliably predict enhancer-promoter interactions genome-wide. 展开更多
关键词 CHROMATIN interaction enhancer-promoter interaction DEEP NEURAL network
原文传递
基于多粒度网络预测增强子-启动子相互作用
2
作者 刘志豪 王会青 +1 位作者 李浩琳 韩家乐 《华东理工大学学报(自然科学版)》 CAS CSCD 北大核心 2024年第1期106-113,共8页
准确识别增强子-启动子相互作用(EPIs)对疾病来源追踪和发展基因疗法有重要意义。现有预测方法缺乏对序列不同粒度信息的关注,提取增强子、启动子序列包含的不同粒度特征有助于从多层级分析EPIs。因此,提出EPIs预测模型EPI-PBGA(Paralle... 准确识别增强子-启动子相互作用(EPIs)对疾病来源追踪和发展基因疗法有重要意义。现有预测方法缺乏对序列不同粒度信息的关注,提取增强子、启动子序列包含的不同粒度特征有助于从多层级分析EPIs。因此,提出EPIs预测模型EPI-PBGA(Parallel BiGRU Attention Network),分别通过卷积子网络和双层双向门循环单元(BiGRU)注意子网络提取序列的细粒度、粗糙粒度特征。基于EPIs普遍存在的细胞特异性,在不同细胞系进行粒度选择,选定最优粗糙粒度,同时通过双层BiGRU注意网络提取元件子序列中存在的多种关联特征。实验结果表明,EPI-PBGA在6个基准数据集表现出较好性能,有效预测EPIs。 展开更多
关键词 增强子-启动子相互作用 多粒度 双向门循环单元 特征融合 注意力机制
下载PDF
Computational methods for identifying enhancer-promoter interactions
3
作者 Haiyan Gong Zhengyuan Chen +4 位作者 Yuxin Tang Minghong Li Sichen Zhang Xiaotong Zhang Yang Chen 《Quantitative Biology》 CSCD 2023年第2期122-142,共21页
Background:As parts of the cis-regulatory mechanism of the human genome,interactions between distal enhancers and proximal promoters play a crucial role.Enhancers,promoters,and enhancer-promoter interactions(EPIs)can ... Background:As parts of the cis-regulatory mechanism of the human genome,interactions between distal enhancers and proximal promoters play a crucial role.Enhancers,promoters,and enhancer-promoter interactions(EPIs)can be detected using many sequencing technologies and computation models.However,a systematic review that summarizes these EPI identification methods and that can help researchers apply and optimize them is still needed.Results:In this review,we first emphasize the role of EPIs in regulating gene expression and describe a generic framework for predicting enhancer-promoter interaction.Next,we review prediction methods for enhancers,promoters,loops,and enhancer-promoter interactions using different data features that have emerged since 2010,and we summarize the websites available for obtaining enhancers,promoters,and enhancer-promoter interaction datasets.Finally,we review the application of the methods for identifying EPIs in diseases such as cancer.Conclusions:The advance of computer technology has allowed traditional machine learning,and deep learning methods to be used to predict enhancer,promoter,and EPIs from genetic,genomic,and epigenomic features.In the past decade,models based on deep learning,especially transfer learning,have been proposed for directly predicting enhancer-promoter interactions from DNA sequences,and these models can reduce the parameter training time required of bioinformatics researchers.We believe this review can provide detailed research frameworks for researchers who are beginning to study enhancers,promoters,and their interactions. 展开更多
关键词 enhancer promoter enhancer-promoter interaction machine learning deep learning
原文传递
Delta.EPI:a probabilistic voting-based enhancer-promoter interaction prediction platform
4
作者 Yuyang Zhang Haoyu Wang +4 位作者 Jing Liu Junlin Li Qing Zhang Bixia Tang Zhihua Zhang 《Journal of Genetics and Genomics》 SCIE CAS CSCD 2023年第7期519-527,共9页
Enhancer promoter interaction(EPI)involves most of gene transcriptional regulation in the high eukaryotes.Predicting the EPIs from given genomic loci or DNA sequences is not a trivial task.The benchmarking work so far... Enhancer promoter interaction(EPI)involves most of gene transcriptional regulation in the high eukaryotes.Predicting the EPIs from given genomic loci or DNA sequences is not a trivial task.The benchmarking work so far for EPI predictors is more or less empirical and lacks quantitative model-based comparisons,posing challenges for molecular biologists to obtain reliable EPI predictions.Here,we present an EPI prediction platform,namely Delta.EPI.Based on a statistic model of the data integration,Delta.EPI is capable of comprehensively assessing the predictions from four state-of-the-art EPI predictors.Equipped with a userfriendly interface and visualization platform,Delta.EPI presents the sorted results with the confidence of EPI relevance,which may guide the molecular biologists who lack the pre-knowledge of the algorithms of EPI prediction.Last,we showcase the utility of Delta.EPI with a case study.Delta.EPI provides a powerful tool to fuel the gene regulation and 3D genome studies by ease-to-access EPI predictions.Delta.EPI can be freely accessed at https://ngdc.cncb.ac.cn/deltaEPI/. 展开更多
关键词 enhancer-promoter interaction Hi-C PREDICTION Benchmark Web server
原文传递
基于多特征融合的增强子-启动子相互作用预测综述 被引量:1
5
作者 胡宇佳 甘伟 朱敏 《计算机科学》 CSCD 北大核心 2020年第5期64-71,共8页
研究增强子-启动子相互作用机理有助于人们理解基因调控关系,进而揭示与疾病相关的基因,为疾病诊疗提供新思路和新方法。传统的生物检测方法的实验成本高、耗时长,且受分辨率的限制,难以精确鉴定单个增强子-启动子的相互作用。通过计算... 研究增强子-启动子相互作用机理有助于人们理解基因调控关系,进而揭示与疾病相关的基因,为疾病诊疗提供新思路和新方法。传统的生物检测方法的实验成本高、耗时长,且受分辨率的限制,难以精确鉴定单个增强子-启动子的相互作用。通过计算方法来解决生物问题已成为近年来的研究热点,此类方法可以通过复杂的网络结构主动学习序列特征和空间结构,进而准确预测增强子-启动子的作用。首先介绍了传统生物实验检测方法的研究现状;然后从序列特征的角度出发,围绕多特征融合的基本思想,对统计学和深度学习方法在增强子-启动子相互作用预测上的应用进行归纳整理;最后对该领域的研究热点和挑战进行总结分析。 展开更多
关键词 增强子-启动子相互作用 多特征融合 序列特征 应用综述 疾病诊疗
下载PDF
A hypothetical model of trans-acting R-loops-mediated promoter-enhancer interactions by Alu elements
6
作者 Xue Bai Feifei Li Zhihua Zhang 《Journal of Genetics and Genomics》 SCIE CAS CSCD 2021年第11期1007-1019,共13页
Enhancers modulate gene expression by interacting with promoters.Models of enhancer-promoter interactions(EPIs)in the literature involve the activity of many components,including transcription factors and nucleic acid... Enhancers modulate gene expression by interacting with promoters.Models of enhancer-promoter interactions(EPIs)in the literature involve the activity of many components,including transcription factors and nucleic acid.However,the role that sequence similarity plays in EPIs remains largely unexplored.Herein,we report that Alu-derived sequences dominate sequence similarity between enhancers and promoters.After rejecting alternative DNA:DNA and DNA:RNA triplex models,we propose that enhancer-associated RNAs(eRNAs)may directly contact their targeted promoters by forming trans-acting R-loops at those Alu sequences.We show how the characteristic distribution of functional genomic data,such as RNA-DNA proximate ligation reads,binding of transcription factors,and RNA-binding proteins,all align with the Alu sequences of EPIs.We also show that these aligned Alu sequences may be subject to the constraint of coevolution,further implying the functional significance of these R-loop hybrids.Finally,our results imply that eRNA and Alu elements associate in a manner previously unrecognized in EPIs and the evolution of gene regulation networks in mammals. 展开更多
关键词 ALU enhancer-promoter interaction eRNA R-loop
原文传递
人类原钙粘蛋白基因簇调控元件的克隆及对其启动子活性的影响 被引量:3
7
作者 吴海洋 郭亚 +1 位作者 李伟 吴强 《生命科学研究》 CAS CSCD 北大核心 2014年第2期95-99,150,共6页
人类原钙粘蛋白(Protocadherin,Pcdh)基因簇包含53个成串排列非常相似的基因,组成3个紧密相连的基因簇(α,β和γ)。原钙粘蛋白基因簇γ通过启动子选择性表达产生神经元细胞膜表面的分子多样性,但是,该多样性产生的分子机制还不清楚。... 人类原钙粘蛋白(Protocadherin,Pcdh)基因簇包含53个成串排列非常相似的基因,组成3个紧密相连的基因簇(α,β和γ)。原钙粘蛋白基因簇γ通过启动子选择性表达产生神经元细胞膜表面的分子多样性,但是,该多样性产生的分子机制还不清楚。调控元件HS7L和HS5-1aL作为候选的增强子可能具有调控Pcdhγ基因表达的作用。利用分子克隆的方法,将调控元件HS7L和HS5-1aL分别克隆至包含γa9、γa10、γb3、γb7和γc3启动子的荧光素酶报告基因的下游。通过荧光素酶报告基因试验检测其对该5种Pcdhγ启动子活性的影响,发现HS7L对5种启动子活性具有增强作用,HS5-1aL对γa10启动子活性具有增强作用。之后,通过基因沉默绝缘子CTCF,发现下调CTCF不仅降低γb1基因表达,而且能够显著降低γb1启动子报告基因活性。试验结果表明调控元件HS7L和HS5-1aL能够增强Pcdhγ启动子活性,推测可能通过CTCF介导的增强子-启动子相互作用调控Pcdhγ的细胞特异性基因表达。 展开更多
关键词 原钙粘蛋白基因簇 选择性表达 绝缘子CTCF 增强子-启动子相互作用
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部