Methane hydrates(MHs)play important roles in the fields of chemistry,energy,environmental sciences,etc.In this work,we employ the generalized energy-based fragmentation(GEBF)approach to compute the binding energies an...Methane hydrates(MHs)play important roles in the fields of chemistry,energy,environmental sciences,etc.In this work,we employ the generalized energy-based fragmentation(GEBF)approach to compute the binding energies and Raman spectra of various MH clusters.For the GEBF binding energies of various MH clusters,we first evaluated the various functionals of density functional theory(DFT),and compared them with the results of explicitly correlated combined coupled-cluster singles and doubles with noniterative triples corrections[CCSD(T)(F12^(*))]method.Our results show that the two best functionals are B3PW91-D3 and B97D,with mean absolute errors of only 0.27 and 0.47 kcal/mol,respectively.Then we employed GEBF-B3PW91-D3 to obtain the structures and Raman spectra of MH clusters with mono-and double-cages.Our results show that the B3PW91-D3 functional can well reproduce the experimental C-H stretching Raman spectra of methane in MH crystals,with errors less than 3 cm^(-1).As the size of the water cages increased,the C-H stretching Raman spectra exhibited a redshift,which is also in agreement with the experimental“loose cage-tight cage”model.In addition,the Raman spectra are only slightly affected by the neighboring environment(cages)of methane.The blueshifts of C-H stretching frequencies are no larger than 3 cm^(-1) for CH_(4) from monocages to doublecages.The Raman spectra of the MH clusters could be combined with the experimental Raman spectra to investigate the structures of methane hydrates in the ocean bottom or in the interior of interstellar icy bodies.Based on the B3PW91-D3 or B97D functional and machine learning models,molecular dynamics simulations could be applied to the nucleation and growth mechanisms,and the phase transitions of methane hydrates.展开更多
In this paper, a hierarchical approach is proposed for the evaluation of fatigue cracking in asphalt concrete pavements considering three different levels of complexities in the representation of the material behaviou...In this paper, a hierarchical approach is proposed for the evaluation of fatigue cracking in asphalt concrete pavements considering three different levels of complexities in the representation of the material behaviour, design parameters characterization and the determination of the pavement response as well as damage computation. Based on the developed hierarchical approach, three damage computation levels are identified and proposed. The levels of fatigue damage analysis provides pavement engineers a variety of tools that can be used for pavement analysis depending on the availability of data, required level of prediction accuracy and computational power at their disposal. The hierarchical approach also provides a systematic approach for the understanding of the fundamental mechanisms of pavement deterioration, the elimination of the empiricism associated with pavement design today and the transition towards the use of sound principles of mechanics in pavement analysis and design.展开更多
基金supported by the National Natural Science Foundation of China(No.22033004,No.21833002,No.21873046,and No.22073043)the Natural Science Foundation of Jiangsu Province(No.BK20210175)。
文摘Methane hydrates(MHs)play important roles in the fields of chemistry,energy,environmental sciences,etc.In this work,we employ the generalized energy-based fragmentation(GEBF)approach to compute the binding energies and Raman spectra of various MH clusters.For the GEBF binding energies of various MH clusters,we first evaluated the various functionals of density functional theory(DFT),and compared them with the results of explicitly correlated combined coupled-cluster singles and doubles with noniterative triples corrections[CCSD(T)(F12^(*))]method.Our results show that the two best functionals are B3PW91-D3 and B97D,with mean absolute errors of only 0.27 and 0.47 kcal/mol,respectively.Then we employed GEBF-B3PW91-D3 to obtain the structures and Raman spectra of MH clusters with mono-and double-cages.Our results show that the B3PW91-D3 functional can well reproduce the experimental C-H stretching Raman spectra of methane in MH crystals,with errors less than 3 cm^(-1).As the size of the water cages increased,the C-H stretching Raman spectra exhibited a redshift,which is also in agreement with the experimental“loose cage-tight cage”model.In addition,the Raman spectra are only slightly affected by the neighboring environment(cages)of methane.The blueshifts of C-H stretching frequencies are no larger than 3 cm^(-1) for CH_(4) from monocages to doublecages.The Raman spectra of the MH clusters could be combined with the experimental Raman spectra to investigate the structures of methane hydrates in the ocean bottom or in the interior of interstellar icy bodies.Based on the B3PW91-D3 or B97D functional and machine learning models,molecular dynamics simulations could be applied to the nucleation and growth mechanisms,and the phase transitions of methane hydrates.
基金supported by the Natural Science Foundation in Jiangsu Province of China(BK20130748)Natural Science Fund for Colleges and Universities in Jiangsu Province of China(13KJB150012)+1 种基金Jiangxi Provincial Natural Science Foundation of China(20142BAB213010)National Natural Science Foundation of China(21405013)~~
文摘In this paper, a hierarchical approach is proposed for the evaluation of fatigue cracking in asphalt concrete pavements considering three different levels of complexities in the representation of the material behaviour, design parameters characterization and the determination of the pavement response as well as damage computation. Based on the developed hierarchical approach, three damage computation levels are identified and proposed. The levels of fatigue damage analysis provides pavement engineers a variety of tools that can be used for pavement analysis depending on the availability of data, required level of prediction accuracy and computational power at their disposal. The hierarchical approach also provides a systematic approach for the understanding of the fundamental mechanisms of pavement deterioration, the elimination of the empiricism associated with pavement design today and the transition towards the use of sound principles of mechanics in pavement analysis and design.