中国哺乳动物区系有鲜明的特色:有青藏高原分布的特有种属,有第三纪孑遗动物——大熊猫科和白鱀豚科,世界一半以上的鼠兔科动物为中国特有种,中国还是世界有蹄类最丰富的国家。新世纪以来,世界哺乳动物分类体系发生了变化,中国也发现一...中国哺乳动物区系有鲜明的特色:有青藏高原分布的特有种属,有第三纪孑遗动物——大熊猫科和白鱀豚科,世界一半以上的鼠兔科动物为中国特有种,中国还是世界有蹄类最丰富的国家。新世纪以来,世界哺乳动物分类体系发生了变化,中国也发现一批哺乳动物新种和新记录种。因此,有必要对中国哺乳动物多样性名录进行及时更新和完善。我们在《中国生物多样性红色名录·哺乳动物卷》的编研中,对中国哺乳动物的目级阶元采用在系统发育基因组学已经取得一致意见的方案;在科及以下阶元以《中国哺乳动物种与亚种分类名录与分布大全》和Mammal Species of the World:A Taxonomic and Geographic Reference(第3版)的分类系统为基础,有蹄类的分类采用Ungulate Taxonomy分类系统;收集整理了中国(包括台湾地区)所有哺乳动物资料,增加了截至2015年3月31日学术期刊发表的中国哺乳动物新种和新记录种,通过会议评审和通讯评审,调整了一些物种的名称和分类地位,确定了《中国哺乳动物名录(2015)》。该名录收录了中国现有哺乳动物12目55科245属673种,其中,新种18种(包括11种最近发现的或利用分子生物学方法确定的、尚有争议的新种)、新记录种18种、60个亚种提升为种。根据研究结果和专家意见,剔除了52种哺乳动物。此外,中国分类学家对新版名录中的20种啮类(Glires)的分类地位持不同意见,这些种类需要进一步研究。以《中国哺乳动物名录(2015)》收录的中国哺乳动物种数与其他国家比较,中国哺乳动物种数超过IUCN(2014)报道的世界哺乳动物排序第一的印度尼西亚(670种)。中国有150种特有哺乳动物,特有种比例为22.3%。兔形目特有种比例达43%,鼠兔科特有种比例更高达52%。劳亚食虫目的特有种比例为35%。中国灵长目、啮齿目和翼手目特有种比例约占各目总种数的1/5,翼手目特有种包�展开更多
There are many extant endemic plants in China, which were widely distributed in the North Hemisphere during Tertiary. The global cooling during the Tertiary caused a series of narrow distribution regions of the plants...There are many extant endemic plants in China, which were widely distributed in the North Hemisphere during Tertiary. The global cooling during the Tertiary caused a series of narrow distribution regions of the plants. Quaternary glaciation invaded most regions of North America and Eurasia where severe destruction was imposed onto vegetation. However, such destruction was lessened in China largely because of specific topographic and geographical and obviously, a number of other conditions accounted for an unusual refugee camp for the relics of plants in China, among which lots of endemic taxa exist. Recently, Chinese endemic species, such as Metaseqouia, Eucommia , have been employed to conduct multi_disciplinary comprehensive studies so as to analyze Tertiary climate changes quantitatively. Meanwhile, a rigorous method, i.e. climate analysis of endemic species (CAES) has come to maturation. This method is characteristic of some generality because it is supposed to be applicable to the endemic species in other regions of the world. CAES is involved in the following aspects: 1. Conduct multidisciplinary studies on living and fossil species of endemic plants and trace their evolutionary courses. 2. Compare fossil species with living one and clarify which is the nearest living relative (NLR) to fossil counterpart. 3. Fossils and their living counterparts (NLR) are supposed to have similar ecological requirements to meet their life cycles. 4. Investigate the geographic distribution of living and fossil plants within the same taxa and ascertain the dynamic changes of their distributions in geological age. 5. Analyze climate factors in the distribution of specific endemic taxa and obtain the data of climatic characters which are suitable for reconstruction of paleoclimate where fossil counterparts lived. 6. Further study the physio_ecology of living species and determinate paleoclimate where fossil counterparts lived. 7. Integrate analysis of the data from steps 4, 5 and 6, and quantitatively reconstruct the climate wh展开更多
文摘中国哺乳动物区系有鲜明的特色:有青藏高原分布的特有种属,有第三纪孑遗动物——大熊猫科和白鱀豚科,世界一半以上的鼠兔科动物为中国特有种,中国还是世界有蹄类最丰富的国家。新世纪以来,世界哺乳动物分类体系发生了变化,中国也发现一批哺乳动物新种和新记录种。因此,有必要对中国哺乳动物多样性名录进行及时更新和完善。我们在《中国生物多样性红色名录·哺乳动物卷》的编研中,对中国哺乳动物的目级阶元采用在系统发育基因组学已经取得一致意见的方案;在科及以下阶元以《中国哺乳动物种与亚种分类名录与分布大全》和Mammal Species of the World:A Taxonomic and Geographic Reference(第3版)的分类系统为基础,有蹄类的分类采用Ungulate Taxonomy分类系统;收集整理了中国(包括台湾地区)所有哺乳动物资料,增加了截至2015年3月31日学术期刊发表的中国哺乳动物新种和新记录种,通过会议评审和通讯评审,调整了一些物种的名称和分类地位,确定了《中国哺乳动物名录(2015)》。该名录收录了中国现有哺乳动物12目55科245属673种,其中,新种18种(包括11种最近发现的或利用分子生物学方法确定的、尚有争议的新种)、新记录种18种、60个亚种提升为种。根据研究结果和专家意见,剔除了52种哺乳动物。此外,中国分类学家对新版名录中的20种啮类(Glires)的分类地位持不同意见,这些种类需要进一步研究。以《中国哺乳动物名录(2015)》收录的中国哺乳动物种数与其他国家比较,中国哺乳动物种数超过IUCN(2014)报道的世界哺乳动物排序第一的印度尼西亚(670种)。中国有150种特有哺乳动物,特有种比例为22.3%。兔形目特有种比例达43%,鼠兔科特有种比例更高达52%。劳亚食虫目的特有种比例为35%。中国灵长目、啮齿目和翼手目特有种比例约占各目总种数的1/5,翼手目特有种包�
文摘There are many extant endemic plants in China, which were widely distributed in the North Hemisphere during Tertiary. The global cooling during the Tertiary caused a series of narrow distribution regions of the plants. Quaternary glaciation invaded most regions of North America and Eurasia where severe destruction was imposed onto vegetation. However, such destruction was lessened in China largely because of specific topographic and geographical and obviously, a number of other conditions accounted for an unusual refugee camp for the relics of plants in China, among which lots of endemic taxa exist. Recently, Chinese endemic species, such as Metaseqouia, Eucommia , have been employed to conduct multi_disciplinary comprehensive studies so as to analyze Tertiary climate changes quantitatively. Meanwhile, a rigorous method, i.e. climate analysis of endemic species (CAES) has come to maturation. This method is characteristic of some generality because it is supposed to be applicable to the endemic species in other regions of the world. CAES is involved in the following aspects: 1. Conduct multidisciplinary studies on living and fossil species of endemic plants and trace their evolutionary courses. 2. Compare fossil species with living one and clarify which is the nearest living relative (NLR) to fossil counterpart. 3. Fossils and their living counterparts (NLR) are supposed to have similar ecological requirements to meet their life cycles. 4. Investigate the geographic distribution of living and fossil plants within the same taxa and ascertain the dynamic changes of their distributions in geological age. 5. Analyze climate factors in the distribution of specific endemic taxa and obtain the data of climatic characters which are suitable for reconstruction of paleoclimate where fossil counterparts lived. 6. Further study the physio_ecology of living species and determinate paleoclimate where fossil counterparts lived. 7. Integrate analysis of the data from steps 4, 5 and 6, and quantitatively reconstruct the climate wh