Monolayer two-dimensional(2D)semiconductors are emerging as top candidates for the channels of the future chip industry due to their atomically thin body and superior immunity to short channel effect.However,the low s...Monolayer two-dimensional(2D)semiconductors are emerging as top candidates for the channels of the future chip industry due to their atomically thin body and superior immunity to short channel effect.However,the low saturation current caused by the high contact resistance(R_(c))in monolayer MoS2 field-effect transistors(FETs)limits ultimate electrical performance at scaled contact lengths,which seriously hinders application of monolayer MoS_(2 )transistors.Here we present a scalable strategy with a clean end-bond contact scheme that leads to size-independent electrodes and ultralow contact resistance of 2.5 kΩ·μm to achieve record high performances of saturation current density of 730μA·μm^(-1)at 300 K and 960μA·μm^(-1)at 6 K.Our end-bond contact strategy in monolayer MoS2 FETs enables the great potential for atomically thin integrated circuitry.展开更多
基金supported by the Natural Science Foundation of Beijing Municipality(No.Z180011)the National Natural Science Foundation of China(Nos.51991340,51991342,51527802,51972022,51722203,and 51672026)+2 种基金the Overseas Expertise Introduction Projects for Discipline Innovation(No.B14003)the National Key Research and Development Program of China(Nos.2016YFA0202701,and 2018YFA0703503)the Fundamental Research Funds for the Central Universities(No.FRF-TP-19-025A3).
文摘Monolayer two-dimensional(2D)semiconductors are emerging as top candidates for the channels of the future chip industry due to their atomically thin body and superior immunity to short channel effect.However,the low saturation current caused by the high contact resistance(R_(c))in monolayer MoS2 field-effect transistors(FETs)limits ultimate electrical performance at scaled contact lengths,which seriously hinders application of monolayer MoS_(2 )transistors.Here we present a scalable strategy with a clean end-bond contact scheme that leads to size-independent electrodes and ultralow contact resistance of 2.5 kΩ·μm to achieve record high performances of saturation current density of 730μA·μm^(-1)at 300 K and 960μA·μm^(-1)at 6 K.Our end-bond contact strategy in monolayer MoS2 FETs enables the great potential for atomically thin integrated circuitry.