期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于实测数据的地铁隧道长期沉降预测模型研究 被引量:10
1
作者 李翔宇 李新源 +2 位作者 李明宇 聂俊霞 冯晓波 《西安建筑科技大学学报(自然科学版)》 北大核心 2021年第2期186-193,共8页
基于上海地铁二号线的实测沉降数据,运用遗传算法(GA)和粒子群算法(PSO)对传统BP神经网络进行了优化,以弥补BP神经网络在网络结构、权值和阈值选择上的随机性以及容易局部收敛等缺陷,据此提出了两种新型隧道长期沉降预测模型,即GA-BP神... 基于上海地铁二号线的实测沉降数据,运用遗传算法(GA)和粒子群算法(PSO)对传统BP神经网络进行了优化,以弥补BP神经网络在网络结构、权值和阈值选择上的随机性以及容易局部收敛等缺陷,据此提出了两种新型隧道长期沉降预测模型,即GA-BP神经网络和PSO-BP神经网络模型;并对比研究了经验曲线、BP神经网络、GA-BP神经网络以及PSO-BP神经网络等模型方法的优缺点及预测效果.研究发现,以上各神经网络模型均取得了较为满意的预测结果,其中PSO-BP神经网络模型的预测精度最佳,且运算速度最快,是文中所提方法中最适用的盾构隧道长期沉降预测模型. 展开更多
关键词 盾构隧道 长期沉降预测模型 GA-BP神经网络模型 PSO-BP神经网络模型 经验曲线模型
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部