期刊导航
期刊开放获取
cqvip
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
一种融合双向LSTM和CNN的混合情感分析模型
被引量:
6
1
作者
赵星宇
何浩
+1 位作者
范双南
邓永和
《湘潭大学学报(自然科学版)》
CAS
2021年第4期69-76,共8页
针对现有文本情感分析方法实时性不强、难以应用到大规模文本、不能同时提取文本上下文信息和局部语义特征等问题,提出一种融合双向长短期记忆(LSTM)和卷积神经网络(CNN)的混合情感分析模型.通过使用双向LSTM和CNN模型对由word2vec编码...
针对现有文本情感分析方法实时性不强、难以应用到大规模文本、不能同时提取文本上下文信息和局部语义特征等问题,提出一种融合双向长短期记忆(LSTM)和卷积神经网络(CNN)的混合情感分析模型.通过使用双向LSTM和CNN模型对由word2vec编码得到的文本词向量进行训练,运用注意力机制将双向LSTM模型学习到的特征作用于CNN模型上,并进行特征加权,最后将双向LSTM模型和CNN模型得到的结果进行拼接,由分类器得到相应的情感分类结果.在NLPCC-SCDL数据集上进行实验,结果表明所提出的融合双向LSTM和CNN模型在精度、召回、f_(1)值和准确度方面优于两个单独的模型.
展开更多
关键词
自然语言处理(NLP)
情感分析
双向长短记忆网络(Bi-LSTM)
卷积神经网络(CNN)
下载PDF
职称材料
题名
一种融合双向LSTM和CNN的混合情感分析模型
被引量:
6
1
作者
赵星宇
何浩
范双南
邓永和
机构
中南大学湘雅护理学院
湘潭大学计算机学院·网络空间安全学院
湖南交通工程学院电气与信息工程学院
湖南工程学院计算科学与电子学院
出处
《湘潭大学学报(自然科学版)》
CAS
2021年第4期69-76,共8页
基金
湖南省教育厅科研资助项目(16A063)。
文摘
针对现有文本情感分析方法实时性不强、难以应用到大规模文本、不能同时提取文本上下文信息和局部语义特征等问题,提出一种融合双向长短期记忆(LSTM)和卷积神经网络(CNN)的混合情感分析模型.通过使用双向LSTM和CNN模型对由word2vec编码得到的文本词向量进行训练,运用注意力机制将双向LSTM模型学习到的特征作用于CNN模型上,并进行特征加权,最后将双向LSTM模型和CNN模型得到的结果进行拼接,由分类器得到相应的情感分类结果.在NLPCC-SCDL数据集上进行实验,结果表明所提出的融合双向LSTM和CNN模型在精度、召回、f_(1)值和准确度方面优于两个单独的模型.
关键词
自然语言处理(NLP)
情感分析
双向长短记忆网络(Bi-LSTM)
卷积神经网络(CNN)
Keywords
Natural
Language
Processing(NLP)
emotion
analyses
Bi-LSTM
CNN
分类号
TP391.4 [自动化与计算机技术—计算机应用技术]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
一种融合双向LSTM和CNN的混合情感分析模型
赵星宇
何浩
范双南
邓永和
《湘潭大学学报(自然科学版)》
CAS
2021
6
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部