Complete bearing spiral case has not been applied to large power stations in China so far. The proposal of applying complete bearing spiral case necessitates an analysis of the reliability of the spiral case structure...Complete bearing spiral case has not been applied to large power stations in China so far. The proposal of applying complete bearing spiral case necessitates an analysis of the reliability of the spiral case structure and the security of units under various working conditions. In combination with practice of a project, this paper presents a three-dimensional nonlinear finite element static analysis of the concrete using a concrete smeared crack model by means of the well-known finite element method (FEM) software ABAQUS. The stress distribution of the spiral case and reinforcing bars, the range of damages in surrounding concrete, and the displacement of structure are quantified. The computational results indicate that the embedment method ensures the structure's safety in strength. At the same time, the result shows that this embedment is a kind of preponderant method for embedment in aspects of economy and technique of construction, and the application of this embedment method to the hydropower station is feasible provided that some proper engineering measures are taken to constrain the width of the concrete in accord with the code's requirements. The paper proves the security and reliability of the structural design of spiral case in hydropower station accordingly.展开更多
基金Supported by the Sustentation Plan Projects for Out-standing Young Teachers of the Ministry of Education (20011879)
文摘Complete bearing spiral case has not been applied to large power stations in China so far. The proposal of applying complete bearing spiral case necessitates an analysis of the reliability of the spiral case structure and the security of units under various working conditions. In combination with practice of a project, this paper presents a three-dimensional nonlinear finite element static analysis of the concrete using a concrete smeared crack model by means of the well-known finite element method (FEM) software ABAQUS. The stress distribution of the spiral case and reinforcing bars, the range of damages in surrounding concrete, and the displacement of structure are quantified. The computational results indicate that the embedment method ensures the structure's safety in strength. At the same time, the result shows that this embedment is a kind of preponderant method for embedment in aspects of economy and technique of construction, and the application of this embedment method to the hydropower station is feasible provided that some proper engineering measures are taken to constrain the width of the concrete in accord with the code's requirements. The paper proves the security and reliability of the structural design of spiral case in hydropower station accordingly.