A new expression for contact deformation is given, and the normal contact stiff- ness between single asperities is derived according to Hooke's law. A contact model between two ellipsoidal asperities is simulated by ...A new expression for contact deformation is given, and the normal contact stiff- ness between single asperities is derived according to Hooke's law. A contact model between two ellipsoidal asperities is simulated by the FE method, the result compared with the theoretical solution. It is found that the curves of the normal contact stiffness versus the included angle in the principal curvature direction show similar trends and evolve as a cosine feature. The effects of the parameters on normal contact stiffness are found to show that normal contact stiffness increases and reaches the upper limit gradually with an increase in these parameters.展开更多
Physical defects have always played an important role in integrated circuit(IC)yields,and the design sensitivity to these physical elements has continued to increase in today’s nanometer technologies.The modeling of ...Physical defects have always played an important role in integrated circuit(IC)yields,and the design sensitivity to these physical elements has continued to increase in today’s nanometer technologies.The modeling of defect out-lines that exhibit a great variety of defect shapes is usually modeled as a circle,which causes the errors of critical area estimation.Since the outlines of 70%defects approximate to elliptical shapes,a novel yield model associated with elliptical outlines of defects is presented.This model is more general than the circular defects model as the latter is only an instance of the proposed model.Comparisons of the new and circular models in the experiment show that the new model can predict yield caused by real defects more accurately than what the circular model does,which is of significance for the prediction and improvement of the yield.展开更多
This paper presents an efficient crypto processor architecture for key agreement using ECDH(Elliptic-curve Diffie Hellman)protocol over GF2163.The composition of our key-agreement architecture is expressed in consist...This paper presents an efficient crypto processor architecture for key agreement using ECDH(Elliptic-curve Diffie Hellman)protocol over GF2163.The composition of our key-agreement architecture is expressed in consisting of the following:(i)Elliptic-curve Point Multiplication architecture for public key generation(DESIGN-I)and(ii)integration of DESIGN-I with two additional routing multiplexers and a controller for shared key generation(DESIGN-II).The arithmetic operators used in DESIGN-I and DESIGNII contain an adder,squarer,a multiplier and inversion.A simple shift and add multiplication method is employed to retain lower hardware resources.Moreover,an essential inversion operation is operated using the Itoh-Tsujii algorithm with similar hardware resources of used squarer and multiplier units.The proposed architecture is implemented in a Verilog HDL.The implementation results are given on a Xilinx Virtex-7 FPGA(field-programmable gate array)device.For DESIGN-I and DESIGN-II over GF2163,(i)the utilized Slices are 3983 and 4037,(ii)the time to compute one public key and a shared secret is 553.7μs and 1170.7μs and(iii)the consumed power is 29μW and 57μW.Consequently,the achieved area optimized and power reduced results show that the proposed ECDH architecture is a suitable alternative(to generate a shared secret)for the applications that require low hardware resources and power consumption.展开更多
基金Project supported by the National Basic Research Program of China(973 Program)(No.2009CB724406)
文摘A new expression for contact deformation is given, and the normal contact stiff- ness between single asperities is derived according to Hooke's law. A contact model between two ellipsoidal asperities is simulated by the FE method, the result compared with the theoretical solution. It is found that the curves of the normal contact stiffness versus the included angle in the principal curvature direction show similar trends and evolve as a cosine feature. The effects of the parameters on normal contact stiffness are found to show that normal contact stiffness increases and reaches the upper limit gradually with an increase in these parameters.
基金supported by the Hi-Tech Research and Development Program of China(No.2003AA1Z2163).
文摘Physical defects have always played an important role in integrated circuit(IC)yields,and the design sensitivity to these physical elements has continued to increase in today’s nanometer technologies.The modeling of defect out-lines that exhibit a great variety of defect shapes is usually modeled as a circle,which causes the errors of critical area estimation.Since the outlines of 70%defects approximate to elliptical shapes,a novel yield model associated with elliptical outlines of defects is presented.This model is more general than the circular defects model as the latter is only an instance of the proposed model.Comparisons of the new and circular models in the experiment show that the new model can predict yield caused by real defects more accurately than what the circular model does,which is of significance for the prediction and improvement of the yield.
基金We acknowledge the support of Deanship of Scientific Research at King Khalid University for funding this work under grant number R.G.P.1/399/42.
文摘This paper presents an efficient crypto processor architecture for key agreement using ECDH(Elliptic-curve Diffie Hellman)protocol over GF2163.The composition of our key-agreement architecture is expressed in consisting of the following:(i)Elliptic-curve Point Multiplication architecture for public key generation(DESIGN-I)and(ii)integration of DESIGN-I with two additional routing multiplexers and a controller for shared key generation(DESIGN-II).The arithmetic operators used in DESIGN-I and DESIGNII contain an adder,squarer,a multiplier and inversion.A simple shift and add multiplication method is employed to retain lower hardware resources.Moreover,an essential inversion operation is operated using the Itoh-Tsujii algorithm with similar hardware resources of used squarer and multiplier units.The proposed architecture is implemented in a Verilog HDL.The implementation results are given on a Xilinx Virtex-7 FPGA(field-programmable gate array)device.For DESIGN-I and DESIGN-II over GF2163,(i)the utilized Slices are 3983 and 4037,(ii)the time to compute one public key and a shared secret is 553.7μs and 1170.7μs and(iii)the consumed power is 29μW and 57μW.Consequently,the achieved area optimized and power reduced results show that the proposed ECDH architecture is a suitable alternative(to generate a shared secret)for the applications that require low hardware resources and power consumption.