In this paper, an improved two-dimensional convolution neural network(2DCNN) is proposed to monitor and analyze elevator health, based on the distribution characteristics of elevator time series data in two-dimensiona...In this paper, an improved two-dimensional convolution neural network(2DCNN) is proposed to monitor and analyze elevator health, based on the distribution characteristics of elevator time series data in two-dimensional images. The current and effective power signals from an elevator traction machine are collected to generate gray-scale binary images. The improved two-dimensional convolution neural network is used to extract deep features from the images for classification, so as to recognize the elevator working conditions. Furthermore, the oscillation criterion is proposed to describe and analyze the active power oscillations. The current and active power are used to synchronously describe the working condition of the elevator, which can explain the co-occurrence state and potential relationship of elevator data. Based on the improved integration of local features of the time series, the recognition accuracy of the proposed 2DCNN is 97.78%, which is better than that of a one-dimensional convolution neural network. This research can improve the real-time monitoring and visual analysis performance of the elevator maintenance personnel, as well as improve their work efficiency.展开更多
基金Sponsored by the National Natural Science Foundation of China (Grant No.61771223)the Key Research and Development Program of Jiangsu Province(Grant No.SBE2018334)。
文摘In this paper, an improved two-dimensional convolution neural network(2DCNN) is proposed to monitor and analyze elevator health, based on the distribution characteristics of elevator time series data in two-dimensional images. The current and effective power signals from an elevator traction machine are collected to generate gray-scale binary images. The improved two-dimensional convolution neural network is used to extract deep features from the images for classification, so as to recognize the elevator working conditions. Furthermore, the oscillation criterion is proposed to describe and analyze the active power oscillations. The current and active power are used to synchronously describe the working condition of the elevator, which can explain the co-occurrence state and potential relationship of elevator data. Based on the improved integration of local features of the time series, the recognition accuracy of the proposed 2DCNN is 97.78%, which is better than that of a one-dimensional convolution neural network. This research can improve the real-time monitoring and visual analysis performance of the elevator maintenance personnel, as well as improve their work efficiency.