A new numerical method for groundwater flow analysis was introduced to estimate simultaneously velocity vectors and water pressure head. The method could be employed to handle the vertical flow under variably saturate...A new numerical method for groundwater flow analysis was introduced to estimate simultaneously velocity vectors and water pressure head. The method could be employed to handle the vertical flow under variably saturated conditions and for horizontal flow as well. The method allows for better estimation of velocities at the element nodes which can be used as direct input to transport models. The advection-dispersion process was treated by the Eulerian-Lagrangian approach with particle tracking technique using the velocities at FEM nodes. The method was verified with the classical one dimensional model and applied to simulate contaminant transport process through a slurry wall as a barrier to prevent leachate pollution from a sanitary landfill.展开更多
This paper compares numerical modeling of the effect of stress on solute transport (advection and matrix diffusion) in fractured rocks in which fracture apertures are correlated with fracture lengths. It is mainly m...This paper compares numerical modeling of the effect of stress on solute transport (advection and matrix diffusion) in fractured rocks in which fracture apertures are correlated with fracture lengths. It is mainly motivated by the performance and safety assessments of underground radioactive waste repositories. Five research teams used different approaches to model stress/deformation, flow and transport pro- cesses, based on either discrete fracture network or equivalent continuum models. The simulation results derived by various teams generally demonstrated that rock stresses could significantly influence solute transport processes through stress-induced changes in fracture apertures and associated changes in per- meability. Reasonably good agreement was achieved regarding advection and matrix diffusion given the same fracture network, while some observed discrepancies could be explained by different mechanical or transport modeling approaches.展开更多
Gas–liquid–solid multiphase systems are ubiquitous in engineering applications,e.g.inkjet printing,spray drying and coating.Developing a numerical framework for modelling these multiphase systems is of great signifi...Gas–liquid–solid multiphase systems are ubiquitous in engineering applications,e.g.inkjet printing,spray drying and coating.Developing a numerical framework for modelling these multiphase systems is of great significance.An improved,resolved computational fluid dynamics-discrete element method(CFD-DEM)framework is developed to model the multiphase free surface flow with and without evaporation.An improved capillary force model is developed to compute the capillary interactions for partially floating particles at a free surface.Three well-known benchmark cases,namely drag coefficient calculation,the single sphere settling,and drafting-kissing-tumbling of two particles are conducted to validate the resolved CFD-DEM model.It turns out that the resolved CFD-DEM model developed in this paper can accurately calculate the fluid–solid interactions and predict the trajectory of solid particles interacting with the liquid phase.Numerical demonstrations,namely two particles moving along a free surface when the liquid phase evaporates,and particle transport and accumulations inside an evaporating sessile droplet show the performance of the resolved model.展开更多
More than ten thousands of bone fragments were recovered from the Lingjing site, Henan Province during 2005 and 2006. In this paper, through the quantification and statistical analyses of the skeletal elements of the ...More than ten thousands of bone fragments were recovered from the Lingjing site, Henan Province during 2005 and 2006. In this paper, through the quantification and statistical analyses of the skeletal elements of the two predominant species in this assemblage, aurochs (Bos primigenius) and horse (Equus caballus), the differential influences and weights of a variety of taphonomic agencies in the formation of the assemblage are assessed respectively. Compared to the natural agencies, hominid hunting and the subsequent disarticulation, slaughtering, and their transport of the bone elements of the prey species are the main factors accounting for the formation of the present assemblage. More importantly, this study initiatively identifies hominid's differential treatment of the bones of aurochs and horse in the Paleolithic record of East Asia and demonstrably suggests that hominids at the site have already practiced sophisticated hunting techniques and subsistence strategies and may be quite familiar with the ecological and anatomical characteristics and nutritional values of the large-sized prey animals and can accordingly take different processing and handling strategies at the hunting site.展开更多
The transport of fluid, nutrients, and signaling molecules in the bone lacunar-canalicular system (LCS) is critical for osteocyte survival and function. We have applied the fluorescence recovery after photobleaching...The transport of fluid, nutrients, and signaling molecules in the bone lacunar-canalicular system (LCS) is critical for osteocyte survival and function. We have applied the fluorescence recovery after photobleaching (FRAP) approach to quantify load-induced fluid and solute transport in the LCS in situ, but the measurements were limited to cortical regions 30-50 μm underneath the periosteum due to the constrains of laser penetration. With this work, we aimed to expand our understanding of load-induced fluid and solute transport in both trabecular and cortical bone using a multiscaled image-based finite element analysis (FEA) approach. An intact murine tibia was first re-constructed from microCT images into a three-dimensional (3D) linear elastic FEA model, and the matrix deformations at various locations were calculated under axial loading. A segment of the above 3D model was then imported to the biphasic poroelasticity analysis platform (FEBio) to predict load-induced fluid pressure fields, and interstitial solute/fluid flows through LCS in both cortical and trabecular regions. Further, secondary flow effects such as the shear stress and/or drag force acting on osteocytes, the presumed mechano-sensors in bone, were derived using the previously developed ultrastructural model of Brinkman flow in the canaliculi. The material properties assumed in the FEA models were validated against previously obtained strain and FRAP transport data measured on the cortical cortex. Our results demonstrated the feasibility of this computational approach in estimating the fluid flux in the LCS and the cellular stimulation forces (shear and drag forces) for osteocytes in any cortical and trabecular bone locations, allowing further studies of how the activation of osteocytes correlates with in vivo functional bone formation. The study provides a promising platform to reveal potential cellular mechanisms underlying the anabolic power of exercises and physical activities in treating patients with skeletal defici展开更多
基金the National Natural Science Foundation of China (Grant No. 40201024)
文摘A new numerical method for groundwater flow analysis was introduced to estimate simultaneously velocity vectors and water pressure head. The method could be employed to handle the vertical flow under variably saturated conditions and for horizontal flow as well. The method allows for better estimation of velocities at the element nodes which can be used as direct input to transport models. The advection-dispersion process was treated by the Eulerian-Lagrangian approach with particle tracking technique using the velocities at FEM nodes. The method was verified with the classical one dimensional model and applied to simulate contaminant transport process through a slurry wall as a barrier to prevent leachate pollution from a sanitary landfill.
基金the context of the international DECOVALEX-2011 ProjectLBNL from NDA via SERCO TAS was provided through the U.S. Department of Energy Contract No. DE-AC02-05CH11231supported by the Ministry of Education of the Czech Republic within the SGS project No. 7822/115 on the TUL
文摘This paper compares numerical modeling of the effect of stress on solute transport (advection and matrix diffusion) in fractured rocks in which fracture apertures are correlated with fracture lengths. It is mainly motivated by the performance and safety assessments of underground radioactive waste repositories. Five research teams used different approaches to model stress/deformation, flow and transport pro- cesses, based on either discrete fracture network or equivalent continuum models. The simulation results derived by various teams generally demonstrated that rock stresses could significantly influence solute transport processes through stress-induced changes in fracture apertures and associated changes in per- meability. Reasonably good agreement was achieved regarding advection and matrix diffusion given the same fracture network, while some observed discrepancies could be explained by different mechanical or transport modeling approaches.
文摘Gas–liquid–solid multiphase systems are ubiquitous in engineering applications,e.g.inkjet printing,spray drying and coating.Developing a numerical framework for modelling these multiphase systems is of great significance.An improved,resolved computational fluid dynamics-discrete element method(CFD-DEM)framework is developed to model the multiphase free surface flow with and without evaporation.An improved capillary force model is developed to compute the capillary interactions for partially floating particles at a free surface.Three well-known benchmark cases,namely drag coefficient calculation,the single sphere settling,and drafting-kissing-tumbling of two particles are conducted to validate the resolved CFD-DEM model.It turns out that the resolved CFD-DEM model developed in this paper can accurately calculate the fluid–solid interactions and predict the trajectory of solid particles interacting with the liquid phase.Numerical demonstrations,namely two particles moving along a free surface when the liquid phase evaporates,and particle transport and accumulations inside an evaporating sessile droplet show the performance of the resolved model.
基金supported by the Knowledge Innovation Program of the Chinese Academy of Sciences (Grant Nos. KZCX2-YW-Q1-04 and KZCX2-EW-QN110)the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDA05130302)the National Natural Science Foundation of China (Grant Nos. 40602006 and 40872115)
文摘More than ten thousands of bone fragments were recovered from the Lingjing site, Henan Province during 2005 and 2006. In this paper, through the quantification and statistical analyses of the skeletal elements of the two predominant species in this assemblage, aurochs (Bos primigenius) and horse (Equus caballus), the differential influences and weights of a variety of taphonomic agencies in the formation of the assemblage are assessed respectively. Compared to the natural agencies, hominid hunting and the subsequent disarticulation, slaughtering, and their transport of the bone elements of the prey species are the main factors accounting for the formation of the present assemblage. More importantly, this study initiatively identifies hominid's differential treatment of the bones of aurochs and horse in the Paleolithic record of East Asia and demonstrably suggests that hominids at the site have already practiced sophisticated hunting techniques and subsistence strategies and may be quite familiar with the ecological and anatomical characteristics and nutritional values of the large-sized prey animals and can accordingly take different processing and handling strategies at the hunting site.
基金supported by grants from NIH (P30GM103333 and RO1AR054385 to LW)China CSC fellowship (to LF)DOD W81XWH-13-1-0148 (to XLL)
文摘The transport of fluid, nutrients, and signaling molecules in the bone lacunar-canalicular system (LCS) is critical for osteocyte survival and function. We have applied the fluorescence recovery after photobleaching (FRAP) approach to quantify load-induced fluid and solute transport in the LCS in situ, but the measurements were limited to cortical regions 30-50 μm underneath the periosteum due to the constrains of laser penetration. With this work, we aimed to expand our understanding of load-induced fluid and solute transport in both trabecular and cortical bone using a multiscaled image-based finite element analysis (FEA) approach. An intact murine tibia was first re-constructed from microCT images into a three-dimensional (3D) linear elastic FEA model, and the matrix deformations at various locations were calculated under axial loading. A segment of the above 3D model was then imported to the biphasic poroelasticity analysis platform (FEBio) to predict load-induced fluid pressure fields, and interstitial solute/fluid flows through LCS in both cortical and trabecular regions. Further, secondary flow effects such as the shear stress and/or drag force acting on osteocytes, the presumed mechano-sensors in bone, were derived using the previously developed ultrastructural model of Brinkman flow in the canaliculi. The material properties assumed in the FEA models were validated against previously obtained strain and FRAP transport data measured on the cortical cortex. Our results demonstrated the feasibility of this computational approach in estimating the fluid flux in the LCS and the cellular stimulation forces (shear and drag forces) for osteocytes in any cortical and trabecular bone locations, allowing further studies of how the activation of osteocytes correlates with in vivo functional bone formation. The study provides a promising platform to reveal potential cellular mechanisms underlying the anabolic power of exercises and physical activities in treating patients with skeletal defici