The time domain responses of the tunnel element under wave actions during its immersion are investigated based on the linear wave diffraction theory. The integral equation is derived by using the time-domain Green fun...The time domain responses of the tunnel element under wave actions during its immersion are investigated based on the linear wave diffraction theory. The integral equation is derived by using the time-domain Green function that satisfies the free water surface condition in the finite water depth, and is solved by the boundary element method. The motion equations of the tunnel element are solved by the fourth order Runge-Kutta method. A comparison between the computed and measured results reveals that the numerical model can effectively simulate the motion responses of the tunnel element and the cable tensions when the motions of the tunnel element are within some limit. Taking the tunnel element of 100 m in length, 15 m in width and 10 m in height as an example, the computational results of the motion responses of the tunnel element and the cable tensions in different immersing depths are obtained under different incident wave conditions.展开更多
Future space missions demand operations on large flexible structures,for example,space webs,the lightweight cable nets deployable in space,which can serve as platforms for very large structures or be used to capture o...Future space missions demand operations on large flexible structures,for example,space webs,the lightweight cable nets deployable in space,which can serve as platforms for very large structures or be used to capture orbital objects.The interest in research on space webs is likely to increase in the future with the development of promising applications such as Furoshiki sat-ellite of JAXA,Robotic Geostationary Orbit Restorer (ROGER) of ESA and Grapple,Retrieve And Secure Payload (GRASP) of NASA.Unlike high-tensioned nets in civil engineering,space webs may be low-tensioned or tensionless,and extremely flexible,owing to the microgravity in the orbit and the lack of support components,which may cause computational difficulties.Mathematical models are necessary in the analysis of space webs,especially in the conceptual design and evaluation for prototypes.A full three-dimensional finite element (FE) model was developed in this work.Trivial truss elements were adopted to reduce the computational complexity.Considering cable is a compression-free material and its tensile stiffness is also variable,we introduced the cable material constitutive relationship to work out an accurate and feasible model for prototype analysis and design.In the static analysis,the stress distribution and global deformation of the webs were discussed to get access to the knowledge of strength of webs with different types of meshes.In the dynamic analysis,special attention was paid to the impact problem.The max stress and global deformation were investigated.The simulation results indicate the interesting phenomenon which may be worth further research.展开更多
This study has focused on developing numerical procedures for the dynamic nonlinear analysis of cable structures subjected to wave forces and ground motions in the ocean. A geometrically nonlinear finite element proce...This study has focused on developing numerical procedures for the dynamic nonlinear analysis of cable structures subjected to wave forces and ground motions in the ocean. A geometrically nonlinear finite element procedure using the isoparametric curved cable element based on the Lagrangian formulation is briefly summarized. A simple and accurate method to determine the initial equilibrium state of cable systems associated with self-weights, buoyancy and the motion of end points is presented using the load incremental method combined with penalty method. Also the Newmark method is used for dynamic nonlinear analysis of ocean cables. Numerical examples are presented to validate the present numerical method.展开更多
Cable-membrane structures have small rigidity and are highly sensitive to wind. Structural health monitoring is necessary to ensure the serviceability and safety of the structure. In this research, the design method o...Cable-membrane structures have small rigidity and are highly sensitive to wind. Structural health monitoring is necessary to ensure the serviceability and safety of the structure. In this research, the design method of a structural health monitoring system is using the characteristics of a cable-membrane structure. Taking the Yueyang Sanhe Airport Terminal as an example, a finite element model is established to determine the critical structural components. Next, the engineering requirements and the framework of the monitoring system are studied based on the results of numerical analysis. The specific implementation of the structural health monitoring is then carried out, which includes sensor selection, installation and wiring. The proposed framework is successfully applied to the monitoring system for the Yueyang Airport terminal building, and the synchronous acquisition of fiber Bragg grating and acceleration sensor signals is implemented in an innovative way. The successful implementation and operation of structural health monitoring will help to guarantee the safety of the cablemembrane structure during its service life.展开更多
To develop an effective numerical method for the cable sliding problem in cable structures, two-node catenary cable element was built to model the cables based on analytical solution of elastic catenary. Cooperated wi...To develop an effective numerical method for the cable sliding problem in cable structures, two-node catenary cable element was built to model the cables based on analytical solution of elastic catenary. Cooperated with Newton method, continuation method was used to solve the nonlinear equations. This approach is more efficient than using Newton method only and has a wider range to select initial values for the process to converge. The relationship between the tension on a cable segment and its unstrained length was derived and used to calculate the unbalanced cable tensions at the supports. An example is presented to show the correctness and efficiency of the proposed method.展开更多
基金supported by the National Natural Science Foundation of China (Grant No.50439010)the Key Project of the Ministry of Education of China (Grant No.305003)
文摘The time domain responses of the tunnel element under wave actions during its immersion are investigated based on the linear wave diffraction theory. The integral equation is derived by using the time-domain Green function that satisfies the free water surface condition in the finite water depth, and is solved by the boundary element method. The motion equations of the tunnel element are solved by the fourth order Runge-Kutta method. A comparison between the computed and measured results reveals that the numerical model can effectively simulate the motion responses of the tunnel element and the cable tensions when the motions of the tunnel element are within some limit. Taking the tunnel element of 100 m in length, 15 m in width and 10 m in height as an example, the computational results of the motion responses of the tunnel element and the cable tensions in different immersing depths are obtained under different incident wave conditions.
文摘Future space missions demand operations on large flexible structures,for example,space webs,the lightweight cable nets deployable in space,which can serve as platforms for very large structures or be used to capture orbital objects.The interest in research on space webs is likely to increase in the future with the development of promising applications such as Furoshiki sat-ellite of JAXA,Robotic Geostationary Orbit Restorer (ROGER) of ESA and Grapple,Retrieve And Secure Payload (GRASP) of NASA.Unlike high-tensioned nets in civil engineering,space webs may be low-tensioned or tensionless,and extremely flexible,owing to the microgravity in the orbit and the lack of support components,which may cause computational difficulties.Mathematical models are necessary in the analysis of space webs,especially in the conceptual design and evaluation for prototypes.A full three-dimensional finite element (FE) model was developed in this work.Trivial truss elements were adopted to reduce the computational complexity.Considering cable is a compression-free material and its tensile stiffness is also variable,we introduced the cable material constitutive relationship to work out an accurate and feasible model for prototype analysis and design.In the static analysis,the stress distribution and global deformation of the webs were discussed to get access to the knowledge of strength of webs with different types of meshes.In the dynamic analysis,special attention was paid to the impact problem.The max stress and global deformation were investigated.The simulation results indicate the interesting phenomenon which may be worth further research.
文摘This study has focused on developing numerical procedures for the dynamic nonlinear analysis of cable structures subjected to wave forces and ground motions in the ocean. A geometrically nonlinear finite element procedure using the isoparametric curved cable element based on the Lagrangian formulation is briefly summarized. A simple and accurate method to determine the initial equilibrium state of cable systems associated with self-weights, buoyancy and the motion of end points is presented using the load incremental method combined with penalty method. Also the Newmark method is used for dynamic nonlinear analysis of ocean cables. Numerical examples are presented to validate the present numerical method.
基金National Natural Science Foundation of China under Grant Nos.51708088 and 51625802the Foundation for High Level Talent Innovation Support Program of Dalian under Grant No.2017RD03
文摘Cable-membrane structures have small rigidity and are highly sensitive to wind. Structural health monitoring is necessary to ensure the serviceability and safety of the structure. In this research, the design method of a structural health monitoring system is using the characteristics of a cable-membrane structure. Taking the Yueyang Sanhe Airport Terminal as an example, a finite element model is established to determine the critical structural components. Next, the engineering requirements and the framework of the monitoring system are studied based on the results of numerical analysis. The specific implementation of the structural health monitoring is then carried out, which includes sensor selection, installation and wiring. The proposed framework is successfully applied to the monitoring system for the Yueyang Airport terminal building, and the synchronous acquisition of fiber Bragg grating and acceleration sensor signals is implemented in an innovative way. The successful implementation and operation of structural health monitoring will help to guarantee the safety of the cablemembrane structure during its service life.
文摘To develop an effective numerical method for the cable sliding problem in cable structures, two-node catenary cable element was built to model the cables based on analytical solution of elastic catenary. Cooperated with Newton method, continuation method was used to solve the nonlinear equations. This approach is more efficient than using Newton method only and has a wider range to select initial values for the process to converge. The relationship between the tension on a cable segment and its unstrained length was derived and used to calculate the unbalanced cable tensions at the supports. An example is presented to show the correctness and efficiency of the proposed method.