In this paper, a relaxed Hermitian and skew-Hermitian splitting (RHSS) preconditioner is proposed for saddle point problems from the element-free Galerkin (EFG) discretization method. The EFG method is one of the ...In this paper, a relaxed Hermitian and skew-Hermitian splitting (RHSS) preconditioner is proposed for saddle point problems from the element-free Galerkin (EFG) discretization method. The EFG method is one of the most widely used meshfree methods for solving partial differential equations. The RHSS preconditioner is constructed much closer to the coefficient matrix than the well-known HSS preconditioner, resulting in a RHSS fixed-point iteration. Convergence of the RHSS iteration is analyzed and an optimal parameter, which minimizes the spectral radius of the iteration matrix is described. Using the RHSS pre- conditioner to accelerate the convergence of some Krylov subspace methods (like GMRES) is also studied. Theoretical analyses show that the eigenvalues of the RHSS precondi- tioned matrix are real and located in a positive interval. Eigenvector distribution and an upper bound of the degree of the minimal polynomial of the preconditioned matrix are obtained. A practical parameter is suggested in implementing the RHSS preconditioner. Finally, some numerical experiments are illustrated to show the effectiveness of the new preconditioner.展开更多
对无单元伽辽金法的并行计算进行了详细研究,并将其应用于弹性动力学问题。使用并行桶搜索算法进行节点搜索,使用并行几何搜索算法进行样点搜索,讨论了移动最小二乘MLS(Moving Least Squares)形函数及其导数的并行计算和方程组的并行求...对无单元伽辽金法的并行计算进行了详细研究,并将其应用于弹性动力学问题。使用并行桶搜索算法进行节点搜索,使用并行几何搜索算法进行样点搜索,讨论了移动最小二乘MLS(Moving Least Squares)形函数及其导数的并行计算和方程组的并行求解,并利用多层图形划分实现负载平衡。最后给出了并行无单元伽辽金法应用于弹性动力学的计算流程和实例。计算结果表明无单元伽辽金法具有很高的并行性和很好的并行效率,对其进行并行计算具有非常重要的意义。展开更多
基金Acknowledgments. The authors express their thanks to the referees for the comments and constructive suggestions, which were valuable in improving the quality of the manuscript. This work is supported by the National Natural Science Foundation of China(11172192) and the National Natural Science Pre-Research Foundation of Soochow University (SDY2011B01).
文摘In this paper, a relaxed Hermitian and skew-Hermitian splitting (RHSS) preconditioner is proposed for saddle point problems from the element-free Galerkin (EFG) discretization method. The EFG method is one of the most widely used meshfree methods for solving partial differential equations. The RHSS preconditioner is constructed much closer to the coefficient matrix than the well-known HSS preconditioner, resulting in a RHSS fixed-point iteration. Convergence of the RHSS iteration is analyzed and an optimal parameter, which minimizes the spectral radius of the iteration matrix is described. Using the RHSS pre- conditioner to accelerate the convergence of some Krylov subspace methods (like GMRES) is also studied. Theoretical analyses show that the eigenvalues of the RHSS precondi- tioned matrix are real and located in a positive interval. Eigenvector distribution and an upper bound of the degree of the minimal polynomial of the preconditioned matrix are obtained. A practical parameter is suggested in implementing the RHSS preconditioner. Finally, some numerical experiments are illustrated to show the effectiveness of the new preconditioner.
文摘对无单元伽辽金法的并行计算进行了详细研究,并将其应用于弹性动力学问题。使用并行桶搜索算法进行节点搜索,使用并行几何搜索算法进行样点搜索,讨论了移动最小二乘MLS(Moving Least Squares)形函数及其导数的并行计算和方程组的并行求解,并利用多层图形划分实现负载平衡。最后给出了并行无单元伽辽金法应用于弹性动力学的计算流程和实例。计算结果表明无单元伽辽金法具有很高的并行性和很好的并行效率,对其进行并行计算具有非常重要的意义。