期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
Superconducting state in Ba_((1-x)) Sr_(x)Ni_(2)As_(2) near the quantum critical point
1
作者 余承峰 张宗源 +7 位作者 宋林兴 吴彦玮 袁小秋 侯杰 涂玉兵 侯兴元 李世亮 单磊 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第6期488-493,共6页
In the phase diagram of the nickel-based superconductor Ba_(1-x)Sr_(x)Ni_(2)As_(2),T_(C) has been found to be enhanced sixfold near the quantum critical point(QCP) x=0.71 compared with the parent compound.However,the ... In the phase diagram of the nickel-based superconductor Ba_(1-x)Sr_(x)Ni_(2)As_(2),T_(C) has been found to be enhanced sixfold near the quantum critical point(QCP) x=0.71 compared with the parent compound.However,the mechanism is still under debate.Here,we report a detailed investigation of the superconducting properties near the QCP(x≈0.7) by utilizing scanning tunneling microscopy and spectroscopy.The temperature-dependent superconducting gap and magnetic vortex state were obtained and analyzed in the framework of the Bardeen-Cooper-Schrieffer model.The ideal isotropic s-wave superconducting gap excludes the long-speculated nematic fluctuations while preferring strong electron-phonon coupling as the mechanism for T_(C) enhancement near the QCP.The lower than expected gap ratio of Δ/(k_(B) T_(C)) is rooted in the fact that Ba_(1-x)Sr_(x)Ni_(2)As_(2) falls into the dirty limit with a serious pair breaking effect similar to the parent compound. 展开更多
关键词 nickel-based superconductor electronphonon coupling dirty limit scanning tunneling microscopy/spectroscopy
下载PDF
Observation of electron–phonon coupling and linear dichroism in PL spectra of ultra-small CsPbBr_(3) nanoparticle solution
2
作者 Chengqiang Wang Tao Song +7 位作者 Pingyuan Yan Shu Hu Chenhong Xiang Zihan Wu Heng Li Haibin Zhao Lili Han Chuanxiang Sheng 《eScience》 2023年第6期51-57,共7页
Blue-emission(~480 nm)CsPbBr_(3) nanoparticles with ultra-small size(~2.1 nm)are synthesized using the liquid nitrogen freezing with the ligand of dodecylbenzene sulfonic acid(DBSA).Asymmetric narrow emissions at the ... Blue-emission(~480 nm)CsPbBr_(3) nanoparticles with ultra-small size(~2.1 nm)are synthesized using the liquid nitrogen freezing with the ligand of dodecylbenzene sulfonic acid(DBSA).Asymmetric narrow emissions at the low energy side,with the full width at half-maximum of~20 nm,are observed in solution and film at room temperature.The spectral asymmetry is mainly ascribed to phonon vibronic replica with averaged phonon energy of~40 meV.Moreover,exciting this CsPbBr_(3) nanoparticles solution using linearly polarized 6 ns pulsed laser at 355 nm,we observe polarized emission with polarization degree(P_(PL))of~7%,and P_(PL) decreases more than 20%in the vibronic progression.However,the P_(PL) goes to zero in frozen solutions as well as in films.Thus we speculate the polarized emission is due to the photoinduced re-alignment of nanoparticles,and the diminished P_(PL) at the phonon side band may be due to the non-adiabatic electronic-to-vibronic transitions.The novel phenomena from the ultra-small CsPbBr_(3) nanoparticle demonstrated in this work may provide fundamental insights into its photophysics with direct implications for optoelectronics. 展开更多
关键词 CsPbBr_(3) phonon vibronic replicas Polarized Ultra-small electronphonon coupling
原文传递
Applications of Huang–Rhys theory in semiconductor optical spectroscopy 被引量:2
3
作者 Yong Zhang 《Journal of Semiconductors》 EI CAS CSCD 2019年第9期32-40,共9页
A brief review of Huang–Rhys theory and Albrechtos theory is provided,and their connection and applications are discussed.The former is a first order perturbative theory on optical transitions intended for applicatio... A brief review of Huang–Rhys theory and Albrechtos theory is provided,and their connection and applications are discussed.The former is a first order perturbative theory on optical transitions intended for applications such as absorption and emission involving localized defect or impurity centers,emphasizing lattice relaxation or mixing of vibrational states due to electron–phonon coupling.The coupling strength is described by the Huang–Rhys factor.The latter theory is a second order perturbative theory on optical transitions intended for Raman scattering,and can in-principle include electron–phonon coupling in both electronic states and vibrational states.These two theories can potentially be connected through the common effect of lattice relaxation – non-orthonormal vibrational states associated with different electronic states.Because of this perceived connection,the latter theory is often used to explain resonant Raman scattering of LO phonons in bulk semiconductors and further used to describe the size dependence of electron–phonon coupling or Huang–Rhys factor in semiconductor nanostructures.Specifically,the A term in Albrechtos theory is often invoked to describe the multi-LO-phonon resonant Raman peaks in both bulk and nanostructured semiconductors in the literature,due to the misconception that a free-exciton could have a strong lattice relaxation.Without lattice relaxation,the A term will give rise to Rayleigh or elastic scattering.Lattice relaxation is only significant for highly localized defect or impurity states,and should be practically zero for either single particle states or free exciton states in a bulk semiconductor or for confined states in a semiconductor nanostructure that is not extremely small. 展开更多
关键词 HuangRhys factor electronphonon coupling SEMICONDUCTOR OPTICAL SPECTROSCOPY resonant RAMAN scattering
下载PDF
Effects of layer stacking and strain on electronic transport in two-dimensional tin monoxide
4
作者 Yanfeng Ge Yong Liu 《Chinese Physics B》 SCIE EI CAS CSCD 2019年第7期421-427,共7页
Tin monoxide(SnO) is an interesting two-dimensional material because it is a rare oxide semiconductor with bipolar conductivity.However, the lower room temperature mobility limits the applications of SnO in the future... Tin monoxide(SnO) is an interesting two-dimensional material because it is a rare oxide semiconductor with bipolar conductivity.However, the lower room temperature mobility limits the applications of SnO in the future.Thus, we systematically investigate the effects of different layer structures and strains on the electron–phonon coupling and phonon-limited mobility of SnO.The A2uphonon mode in the high-frequency region is the main contributor to the coupling with electrons for different layer structures.Moreover, the orbital hybridization of Sn atoms existing only in the bilayer structure changes the conduction band edge and conspicuously decreases the electron–phonon coupling, and thus the electronic transport performance of the bilayer is superior to that of other layers.In addition, the compressive strain of ε=-1.0% in the monolayer structure results in a conduction band minimum(CBM) consisting of two valleys at the Γ point and along the M–Γ line, and also leads to the intervalley electronic scattering assisted by the Eg(-1)mode.However, the electron–phonon coupling regionally transferring from high frequency A2uto low frequency Eg(-1)results in little change of mobility. 展开更多
关键词 TWO-DIMENSIONAL materials TIN MONOXIDE electronic transport electronphonon coupling
下载PDF
The superconducting properties of a Pb/MoTe_2/Pb heterostructure:First-principles calculations within the anisotropic Migdal–Eliashberg theory
5
作者 Wei Xia Jie Zhang Gui-Qin Huang 《Chinese Physics B》 SCIE EI CAS CSCD 2018年第12期98-103,共6页
The spin-polarized band structures of an ultrathinheterostructure are calculated via first-principles density functional theory.The electron–phonon interaction and the superconducting properties of the ultrathinheter... The spin-polarized band structures of an ultrathinheterostructure are calculated via first-principles density functional theory.The electron–phonon interaction and the superconducting properties of the ultrathinheterostructure are studied by using the fully anisotropic Migdal–Eliashberg theory powered by Wannier–Fourier interpolation.Due to the complex Fermi surface in this low-dimensional system,the electron–phonon interaction and the superconducting gap display significant anisotropy.The temperature dependence of the superconducting gap can be fitted by solving numerically the Bardeen–Cooper–Schrieffer(BCS)gap equation with an adjustable parameter α,suggesting that phonon-mediated mechanism as its superconducting origin.Large Rashba spin-splitting and superconductivity coexist in this heterostructure,suggesting that this hybrid low-dimensional system will have some specific applications. 展开更多
关键词 HETEROSTRUCTURE electronphonon coupling Rashba spin-splitting superconductivity first-principles calculation
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部