SnO_(2)因具有高光学透过性、高电子迁移率,被作为电子传输材料广泛应用于钙钛矿太阳能电池(Perovskite Solar Cells,PSCs)中,但是溶胶—凝胶法制备的SnO_(2)薄膜,由于制备温度低,获得SnO_(2)薄膜晶粒的结晶性差,薄膜缺陷较多,会导致光...SnO_(2)因具有高光学透过性、高电子迁移率,被作为电子传输材料广泛应用于钙钛矿太阳能电池(Perovskite Solar Cells,PSCs)中,但是溶胶—凝胶法制备的SnO_(2)薄膜,由于制备温度低,获得SnO_(2)薄膜晶粒的结晶性差,薄膜缺陷较多,会导致光电电子的复合,因而光电转化率较低。采用去离子水、甲醇、乙醇和异丙醇处理SnO_(2)电子传输层(Electron Transport Layers,ETLs),研究了水热溶剂热处理对SnO_(2)ETLs和PSCs性能的影响。采用XRD、SEM、接触角、AFM、UV-Vis、J-V曲线和IPCE对样品的物相、形貌、粗糙度、光学性能和光电性能进行表征。结果表明,采用溶剂热处理可以提高SnO_(2)的结晶度,提高薄膜的可见光透射率,增强ETLs与钙钛矿层的界面接触,有效提高电池的光电转换效率(Photoelectric Conversion Efficiency,PCE)。SnO_(2)经水热处理组装的PSCs光电性能最优,PCE为15.48%,比未处理电池的PCE 13.60%高出13.8%。另外,其开路电压(Open-circuit Voltage,V_(oc))为1.09 V,短路电流密度(Short-circuit Current Density,J_(sc))为19.32 mA·cm^(-2),填充因子(Fill Factor,FF)为73.18%。展开更多
The electron transport layer (ETL) plays an important role in planar heterojunction perovskite solar cell (PSCs), by affecting the light-harvesting, electron injection and transportation processes, and especially ...The electron transport layer (ETL) plays an important role in planar heterojunction perovskite solar cell (PSCs), by affecting the light-harvesting, electron injection and transportation processes, and especially the crystal- lization of perovskite absorber. In this work, we utilized a commercial TKD-TiO2 nanoparticle with a small diameter of 6 nm for the first time to prepare a compact ETL by spin coating. The packing of small-size particles endowed TKD-TiO2 ETL an appropriate surface-wettability, which is beneficial to the crystallization of perovskite deposited via solution-processed method. The uniform and high-transmittance TKD-TiO2 films were successfully incorporated into PSCs as ETLs. Further careful optimization of ETL thickness gave birth to a highest power conversion efficiency of 11.0%, which was much higher than that of PSC using an ETL with the same thickness made by spray pyrolysis. This TKD-TiO2 provided a universal solar material suitable for the further large-scale production of PSCs. The excellent morphology and the convenient preparation method of TKD-TiO2 film gave it an extensive application in photovoltaic devices.展开更多
Since perovskite solar cells appeared in 2009, its simple preparation process, high photoelectric conversion efficiency and the characteristic of low cost in preparation process let it become the hot spot of both at-h...Since perovskite solar cells appeared in 2009, its simple preparation process, high photoelectric conversion efficiency and the characteristic of low cost in preparation process let it become the hot spot of both at-home and abroad. Owing to the constant efforts of scientists, the conversion efficiency of perovskite solar cells is more than 20% now. Perovskite solar cells are mainly composed of conductive glass, electron transport layer and hole transport layer, perovskite layer and electrode parts. This paper will briefly introduce the working principle and working pro- cess about the electron transport layer of perovskite solar cells. The paper focuses on aspects such as material types (e.g., inorganic electron transport materials, organic small molecule electron transport materials, surface modified electron transport materials and doped electron transport materials), preparation technology of electron transport layer, the effects of electron transport layer on the photo- voltaic performance of the devices, and the electron transport layer in the future research.展开更多
A multi-dimensional conductive heterojunction structure,composited by TiO2,SnO2,and Ti3C2TX MXene,is facilely designed and applied as electron transport layer in efficient and stable planar perovskite solar cells.Base...A multi-dimensional conductive heterojunction structure,composited by TiO2,SnO2,and Ti3C2TX MXene,is facilely designed and applied as electron transport layer in efficient and stable planar perovskite solar cells.Based on an oxygen vacancy scramble effect,the zero-dimensional anatase TiO2 quantum dots,surrounding on two-dimensional conductive Ti3C2TX sheets,are in situ rooted on three-dimensional SnO2 nanoparticles,constructing nanoscale TiO2/SnO2 heterojunctions.The fabrication is implemented in a controlled lowtemperature anneal method in air and then in N2 atmospheres.With the optimal MXene content,the optical property,the crystallinity of perovskite layer,and internal interfaces are all facilitated,contributing more amount of carrier with effective and rapid transferring in device.The champion power conversion efficiency of resultant perovskite solar cells achieves 19.14%,yet that of counterpart is just 16.83%.In addition,it can also maintain almost 85%of its initial performance for more than 45 days in 30–40%humidity air;comparatively,the counterpart declines to just below 75%of its initial performance.展开更多
作为一种新型清洁可再生能源,钙钛矿太阳能电池(Perovskite solar cells,PSC)从发展至今已取得了重大的突破,成为研究的热点。主要介绍了钙钛矿太阳能电池的基本结构和工作原理及电子传输层、钙钛矿层、空穴传输层的制备方法,以及在发...作为一种新型清洁可再生能源,钙钛矿太阳能电池(Perovskite solar cells,PSC)从发展至今已取得了重大的突破,成为研究的热点。主要介绍了钙钛矿太阳能电池的基本结构和工作原理及电子传输层、钙钛矿层、空穴传输层的制备方法,以及在发展过程中所面临的技术问题,最后展望了钙钛矿太阳能电池未来的研究重点及发展前景。展开更多
文摘SnO_(2)因具有高光学透过性、高电子迁移率,被作为电子传输材料广泛应用于钙钛矿太阳能电池(Perovskite Solar Cells,PSCs)中,但是溶胶—凝胶法制备的SnO_(2)薄膜,由于制备温度低,获得SnO_(2)薄膜晶粒的结晶性差,薄膜缺陷较多,会导致光电电子的复合,因而光电转化率较低。采用去离子水、甲醇、乙醇和异丙醇处理SnO_(2)电子传输层(Electron Transport Layers,ETLs),研究了水热溶剂热处理对SnO_(2)ETLs和PSCs性能的影响。采用XRD、SEM、接触角、AFM、UV-Vis、J-V曲线和IPCE对样品的物相、形貌、粗糙度、光学性能和光电性能进行表征。结果表明,采用溶剂热处理可以提高SnO_(2)的结晶度,提高薄膜的可见光透射率,增强ETLs与钙钛矿层的界面接触,有效提高电池的光电转换效率(Photoelectric Conversion Efficiency,PCE)。SnO_(2)经水热处理组装的PSCs光电性能最优,PCE为15.48%,比未处理电池的PCE 13.60%高出13.8%。另外,其开路电压(Open-circuit Voltage,V_(oc))为1.09 V,短路电流密度(Short-circuit Current Density,J_(sc))为19.32 mA·cm^(-2),填充因子(Fill Factor,FF)为73.18%。
基金supported by the Natural Science Foundation of China(grant no.91233204,51372036 and 51102001)the Key Project of Chinese Ministry of Education(no.113020A)+4 种基金the Specialized Research Fund for the Doctoral Program of Higher Education(20120043110002)the National Basic Research Program(2012CB933703)the 111 project(no.B13013)the International Science & Technology Cooperation Program of China(2013DFG50150)the Fundamental Research Funds for the Central Universities(2412015KJ010 and 14ZZ1510)
文摘The electron transport layer (ETL) plays an important role in planar heterojunction perovskite solar cell (PSCs), by affecting the light-harvesting, electron injection and transportation processes, and especially the crystal- lization of perovskite absorber. In this work, we utilized a commercial TKD-TiO2 nanoparticle with a small diameter of 6 nm for the first time to prepare a compact ETL by spin coating. The packing of small-size particles endowed TKD-TiO2 ETL an appropriate surface-wettability, which is beneficial to the crystallization of perovskite deposited via solution-processed method. The uniform and high-transmittance TKD-TiO2 films were successfully incorporated into PSCs as ETLs. Further careful optimization of ETL thickness gave birth to a highest power conversion efficiency of 11.0%, which was much higher than that of PSC using an ETL with the same thickness made by spray pyrolysis. This TKD-TiO2 provided a universal solar material suitable for the further large-scale production of PSCs. The excellent morphology and the convenient preparation method of TKD-TiO2 film gave it an extensive application in photovoltaic devices.
基金financially supported by the Priority Academic Program Development of Jiangsu Higher Education Institutions(No.SZBF201437)A Funding of Jiangsu Innovation Program for Graduate Education(No.SJLX16_0429)
文摘Since perovskite solar cells appeared in 2009, its simple preparation process, high photoelectric conversion efficiency and the characteristic of low cost in preparation process let it become the hot spot of both at-home and abroad. Owing to the constant efforts of scientists, the conversion efficiency of perovskite solar cells is more than 20% now. Perovskite solar cells are mainly composed of conductive glass, electron transport layer and hole transport layer, perovskite layer and electrode parts. This paper will briefly introduce the working principle and working pro- cess about the electron transport layer of perovskite solar cells. The paper focuses on aspects such as material types (e.g., inorganic electron transport materials, organic small molecule electron transport materials, surface modified electron transport materials and doped electron transport materials), preparation technology of electron transport layer, the effects of electron transport layer on the photo- voltaic performance of the devices, and the electron transport layer in the future research.
基金supported by the National Natural Science Foundation of China(51672202,21673170)the Technological Innovation Key Project of Hubei Province,China(2016AAA041)the Fundamental Research Funds for the Central Universities,China(WUT:2016IVA085)~~
基金supported by the Science & Technology Project of Anhui Province (16030701091)the Natural Science Research Project of Anhui Provincial Education Department (KJ2019A0030)+2 种基金the Support Project of Outstanding Young Talents in Anhui Provincial Universities (gxyqZD2018006)the National Natural Science Foundation of China(11704002, 31701323)the Anhui Provincial Natural Science Foundation (1908085QF251,1808085MF185)
文摘A multi-dimensional conductive heterojunction structure,composited by TiO2,SnO2,and Ti3C2TX MXene,is facilely designed and applied as electron transport layer in efficient and stable planar perovskite solar cells.Based on an oxygen vacancy scramble effect,the zero-dimensional anatase TiO2 quantum dots,surrounding on two-dimensional conductive Ti3C2TX sheets,are in situ rooted on three-dimensional SnO2 nanoparticles,constructing nanoscale TiO2/SnO2 heterojunctions.The fabrication is implemented in a controlled lowtemperature anneal method in air and then in N2 atmospheres.With the optimal MXene content,the optical property,the crystallinity of perovskite layer,and internal interfaces are all facilitated,contributing more amount of carrier with effective and rapid transferring in device.The champion power conversion efficiency of resultant perovskite solar cells achieves 19.14%,yet that of counterpart is just 16.83%.In addition,it can also maintain almost 85%of its initial performance for more than 45 days in 30–40%humidity air;comparatively,the counterpart declines to just below 75%of its initial performance.
文摘作为一种新型清洁可再生能源,钙钛矿太阳能电池(Perovskite solar cells,PSC)从发展至今已取得了重大的突破,成为研究的热点。主要介绍了钙钛矿太阳能电池的基本结构和工作原理及电子传输层、钙钛矿层、空穴传输层的制备方法,以及在发展过程中所面临的技术问题,最后展望了钙钛矿太阳能电池未来的研究重点及发展前景。