The theory of slow backward-wave amplifications is developed based on electron cyclotron maser (ECM) mechanism employing an initially rectilinear beam, A nonlinear evolution equation is derived to describe the elect...The theory of slow backward-wave amplifications is developed based on electron cyclotron maser (ECM) mechanism employing an initially rectilinear beam, A nonlinear evolution equation is derived to describe the electron energy. Numerical calculations show that the saturated interaction efficiency in this system may exceed 20~, and the saturated interaction length spans 3-6 centimeters. The distinctive interaction mechanism is promising for the design of compact backward microwave amplification devices, Numerical studies are also presented for the slow-wave ECM efficiency with inclusion of Gaussian beam electron velocity spread. It is shown that the velocity spread reduces the interaction e^ciency.展开更多
基金supported by National Natural Science Foundation of China(Nos.11275007 and 11175023)the Program for Liaoning Excellent Talents in University(LJQ2012098)
文摘The theory of slow backward-wave amplifications is developed based on electron cyclotron maser (ECM) mechanism employing an initially rectilinear beam, A nonlinear evolution equation is derived to describe the electron energy. Numerical calculations show that the saturated interaction efficiency in this system may exceed 20~, and the saturated interaction length spans 3-6 centimeters. The distinctive interaction mechanism is promising for the design of compact backward microwave amplification devices, Numerical studies are also presented for the slow-wave ECM efficiency with inclusion of Gaussian beam electron velocity spread. It is shown that the velocity spread reduces the interaction e^ciency.