在介电常数符号相反的两个材料的界面处可激发出表面等离子体激元 (Surface plasmon)。文中利用普通扫描电子显微镜中出现的电子束诱导沉积纳米碳基本现象 ,提出和发展了一种无需光刻胶和额外掩模的亚微米图形化技术。采用这一新方法 ,...在介电常数符号相反的两个材料的界面处可激发出表面等离子体激元 (Surface plasmon)。文中利用普通扫描电子显微镜中出现的电子束诱导沉积纳米碳基本现象 ,提出和发展了一种无需光刻胶和额外掩模的亚微米图形化技术。采用这一新方法 ,成功地在镀金的半导体 In Ga Al P量子阱表面制备了各种亚微米点阵结构 。展开更多
Several nano material and reaction systems were in situ monitored with an electrochemical TEM wet cell set up. In a 1 g/L sliver particle aqueous solution, the particles were observed to be ca. 10 nm sized, in both di...Several nano material and reaction systems were in situ monitored with an electrochemical TEM wet cell set up. In a 1 g/L sliver particle aqueous solution, the particles were observed to be ca. 10 nm sized, in both discrete particle and nano cluster forms. The silver particles were attached to the 50 nm-thick Si3N4 windows of the wet cell and could not move freely in the liquid. With a SIC14 liquid loaded in the wet cell, silicon nano materials were controllably grown on the wet cell windows by means of a liquid phase electron beam induced deposition (EBID) method. The deposited nano dots were nicely round-shaped, and demonstrated a power law growth dependency on beam exposure time in a log-log plot. In a NiCI2 solution/Ni system, both electrochemical deposition and dissolution of the nickel nano films were observed while applying electric biases on to the nickel electrodes in the wet cell. Instead of extensional growth on existing crystals, interestingly, it is more commonly observed that new nickel nano particles grow out in front of the existing film first and then merged into the film. The wet cell set up is demonstrated to be a versatile tool for nano liquid system research.展开更多
Focused ion-beam-induced deposition (FIBID) and focused electron-beam-induced deposition (FEBID) are conve- nient and useful in nanodevice fabrication. Since the deposition is from the organometallic platinum prec...Focused ion-beam-induced deposition (FIBID) and focused electron-beam-induced deposition (FEBID) are conve- nient and useful in nanodevice fabrication. Since the deposition is from the organometallic platinum precursor, the con- ductive lines directly written by focused ion-beam (FIB) and focused electron-beam (FEB) are carbon-rich materials. We discuss an alternative approach to enhancing the platinum content and improving the conductivity of the conductive leads produced by FIBID and FEBID, namely an annealing treatment. Annealing in pure oxygen at 500 ℃ for 30 min enhances the platinum content values from ~ 18% to 30% and ~ 50% to 90% of FIBID and FEBID, respectively. Moreover, we find that thin films will be formed in the FIBID and FEBID processes. The annealing treatment is helpful to avoid the current leakage caused by these thin films. A single electron transistor is fabricated by FEBID and the current-voltage curve shows the Coulomb blockade effect.展开更多
文摘在介电常数符号相反的两个材料的界面处可激发出表面等离子体激元 (Surface plasmon)。文中利用普通扫描电子显微镜中出现的电子束诱导沉积纳米碳基本现象 ,提出和发展了一种无需光刻胶和额外掩模的亚微米图形化技术。采用这一新方法 ,成功地在镀金的半导体 In Ga Al P量子阱表面制备了各种亚微米点阵结构 。
文摘Several nano material and reaction systems were in situ monitored with an electrochemical TEM wet cell set up. In a 1 g/L sliver particle aqueous solution, the particles were observed to be ca. 10 nm sized, in both discrete particle and nano cluster forms. The silver particles were attached to the 50 nm-thick Si3N4 windows of the wet cell and could not move freely in the liquid. With a SIC14 liquid loaded in the wet cell, silicon nano materials were controllably grown on the wet cell windows by means of a liquid phase electron beam induced deposition (EBID) method. The deposited nano dots were nicely round-shaped, and demonstrated a power law growth dependency on beam exposure time in a log-log plot. In a NiCI2 solution/Ni system, both electrochemical deposition and dissolution of the nickel nano films were observed while applying electric biases on to the nickel electrodes in the wet cell. Instead of extensional growth on existing crystals, interestingly, it is more commonly observed that new nickel nano particles grow out in front of the existing film first and then merged into the film. The wet cell set up is demonstrated to be a versatile tool for nano liquid system research.
基金Project supported by the Research Project of National University of Defense Technology,China(Grant No.JC13-02-14)the National Natural Science Foundation of China(Grant No.11104349)
文摘Focused ion-beam-induced deposition (FIBID) and focused electron-beam-induced deposition (FEBID) are conve- nient and useful in nanodevice fabrication. Since the deposition is from the organometallic platinum precursor, the con- ductive lines directly written by focused ion-beam (FIB) and focused electron-beam (FEB) are carbon-rich materials. We discuss an alternative approach to enhancing the platinum content and improving the conductivity of the conductive leads produced by FIBID and FEBID, namely an annealing treatment. Annealing in pure oxygen at 500 ℃ for 30 min enhances the platinum content values from ~ 18% to 30% and ~ 50% to 90% of FIBID and FEBID, respectively. Moreover, we find that thin films will be formed in the FIBID and FEBID processes. The annealing treatment is helpful to avoid the current leakage caused by these thin films. A single electron transistor is fabricated by FEBID and the current-voltage curve shows the Coulomb blockade effect.