Numerous non-destructive techniques are being investigated for assuring quality of the adhesive bonds.The research presented here is focused on non-destructive assessment of carbon fibre reinforced polymer(CFRP)parts....Numerous non-destructive techniques are being investigated for assuring quality of the adhesive bonds.The research presented here is focused on non-destructive assessment of carbon fibre reinforced polymer(CFRP)parts.The surface condition directly influences the performance of adhesive bonds.The structural joints should ensure safe usage of a structure.However,some modifications of the surface may lead to weak bond that cannot carry the desired load.This is why there is a search for methods of surface assessment before bonding.Moreover,reliable techniques are required to allow to verify the integrity of the adhesive bond after manufacturing or bonded repair.We focus on the laser induced fluorescence(LIF)method for assessing the surface state.The LIF is a noncontact measurement method.In the context of adhesive bond assessment the electromechanical impedance(EMI)method is studied.The EMI uses surface bonded piezoelectric sensors for excitation and sensing.The investigated samples were made of CFRP layers.The samples were treated at elevated temperatures.The influence of the thermal treatment was studied using LIF.The thermal treatment at 220℃could be clearly distinguishedrom the rest of the considered samples.The thermally treated plates were bonded to untreated plate and then they were measured with the EMI method to study the influence of the treatment on the adhesive bond.The changes of EMI spectra were significant for the treatment at 280 ℃ and for some thermally treated samples that were later contaminated with de-icing fluid.展开更多
采用机电阻抗法监测三跨桁架结构加载状况,并利用BP神经网络方法进行结构载荷的定位和定量研究.首先,研究激励频率对压电陶瓷片感知结构变化的灵敏度的影响,并选取最佳敏感频段为190~200 k Hz.然后,测得2个监测节点独立性良好,有助于实...采用机电阻抗法监测三跨桁架结构加载状况,并利用BP神经网络方法进行结构载荷的定位和定量研究.首先,研究激励频率对压电陶瓷片感知结构变化的灵敏度的影响,并选取最佳敏感频段为190~200 k Hz.然后,测得2个监测节点独立性良好,有助于实现载荷定位监测.最后,将采集到的桁架结构加载时的部分阻抗虚部数据进行合理的数据压缩后作为输入样本.压缩前后的数据对比显示这种压缩方法具有可靠性.建立并训练神经网络,剩余部分数据经过相同处理后作为测试样本对训练好的BP网络进行测试.实验结果表明:基于机电阻抗法,利用神经网络可有效实现桁架结构中载荷的精确定位与定量.展开更多
基金supported by the European Union's Horizon 2020 Research and Innovation Program (No. 636494)
文摘Numerous non-destructive techniques are being investigated for assuring quality of the adhesive bonds.The research presented here is focused on non-destructive assessment of carbon fibre reinforced polymer(CFRP)parts.The surface condition directly influences the performance of adhesive bonds.The structural joints should ensure safe usage of a structure.However,some modifications of the surface may lead to weak bond that cannot carry the desired load.This is why there is a search for methods of surface assessment before bonding.Moreover,reliable techniques are required to allow to verify the integrity of the adhesive bond after manufacturing or bonded repair.We focus on the laser induced fluorescence(LIF)method for assessing the surface state.The LIF is a noncontact measurement method.In the context of adhesive bond assessment the electromechanical impedance(EMI)method is studied.The EMI uses surface bonded piezoelectric sensors for excitation and sensing.The investigated samples were made of CFRP layers.The samples were treated at elevated temperatures.The influence of the thermal treatment was studied using LIF.The thermal treatment at 220℃could be clearly distinguishedrom the rest of the considered samples.The thermally treated plates were bonded to untreated plate and then they were measured with the EMI method to study the influence of the treatment on the adhesive bond.The changes of EMI spectra were significant for the treatment at 280 ℃ and for some thermally treated samples that were later contaminated with de-icing fluid.
文摘采用机电阻抗法监测三跨桁架结构加载状况,并利用BP神经网络方法进行结构载荷的定位和定量研究.首先,研究激励频率对压电陶瓷片感知结构变化的灵敏度的影响,并选取最佳敏感频段为190~200 k Hz.然后,测得2个监测节点独立性良好,有助于实现载荷定位监测.最后,将采集到的桁架结构加载时的部分阻抗虚部数据进行合理的数据压缩后作为输入样本.压缩前后的数据对比显示这种压缩方法具有可靠性.建立并训练神经网络,剩余部分数据经过相同处理后作为测试样本对训练好的BP网络进行测试.实验结果表明:基于机电阻抗法,利用神经网络可有效实现桁架结构中载荷的精确定位与定量.