We study the relationship between electromagnetically-induced transparency(EIT) and Autler–Townes(AT) splitting in a cascade three-level Doppler-broadened system. By comparing the absorption spectrum with the flu...We study the relationship between electromagnetically-induced transparency(EIT) and Autler–Townes(AT) splitting in a cascade three-level Doppler-broadened system. By comparing the absorption spectrum with the fluorescence excitation spectrum, it is found that for a Doppler-broadened system, EIT resonance cannot be explained as the result of quantum interference, unlike the case of a homogeneously broadened system. Instead, the macroscopic polarization interference plays an important role in determining the spectra of EIT and AT splitting, which can be explained within the same framework when being detected by the absorption spectra.展开更多
It is well known that an optical trap can be imprinted by a light field in an ultracold-atom system embedded in an optical cavity, and driven by three different coherent fields. Of the three felds coexisting in the op...It is well known that an optical trap can be imprinted by a light field in an ultracold-atom system embedded in an optical cavity, and driven by three different coherent fields. Of the three felds coexisting in the optical cavity there is an intense control field that induces a giant Kerr nonlinearity via electromagnetically-induced transparency, and another feld that creates a periodic optical grating of strength proportional to the square of the associated Rabi frequency. In this work elliptic-soliton solutions to the nonlinear equation governing the propagation of the probe field are considered, with emphasis on the possible generation of optical soliton trains forming a discrete spectrum with well defined quantum numbers. The problem is treated assuming two distinct types of periodic optical gratings and taking into account the negative and positive signs of detunings (detuning above or below resonance). Results predict that the competition between the self-phase and cross-phase modulation nonlinearities gives rise to a rich family of temporal soliton train modes characterized by distinct quantum numbers.展开更多
We study the electromagnetically-induced transparency(EIT) in a Doppler-broadened cascaded three-level system.We decompose the susceptibility responsible for the EIT resonance into a linear and a nonlinear part, and...We study the electromagnetically-induced transparency(EIT) in a Doppler-broadened cascaded three-level system.We decompose the susceptibility responsible for the EIT resonance into a linear and a nonlinear part, and the EIT resonance reflects mainly the characteristics of the nonlinear susceptibility. It is found that the macroscopic polarization interference effect plays a crucial role in determining the EIT resonance spectrum. To obtain a Doppler-free spectrum there must be polarization interference between atoms of different velocities. A dressed-state model, which analyzes the velocities at which the atoms are in resonance with the dressed states through Doppler frequency shifting, is employed to explain the results.展开更多
A velocity-selective spectroscopy technique for studying the spectra of Rydberg gases is presented. This method provides high-resolution spectrum measurements. We present experimental results for a ladder system 6S1/2...A velocity-selective spectroscopy technique for studying the spectra of Rydberg gases is presented. This method provides high-resolution spectrum measurements. We present experimental results for a ladder system 6S1/2→ 6P3/2→ nS(D)electromagnetically-induced transparency involving highly-excited Rydberg states. Based on a radio-frequency modulation technique, we measure the hyperfine structure splitting of intermediate states and the fine structure splitting of Rydberg states in a room temperature ^133Cs vapor cell. The experimental data and theoretical predictions show excellent agreement.展开更多
We propose a three-cavity coupled cavity optomechanical(COM)structure with tunable system parameters and theoretically investigate the probe-light transmission rate.Numerical calculation of the system’s spectra demon...We propose a three-cavity coupled cavity optomechanical(COM)structure with tunable system parameters and theoretically investigate the probe-light transmission rate.Numerical calculation of the system’s spectra demonstrates distinctive compound-induced transparency(CIT)characteristics,including multiple transparency windows and sideband dips,which can be explained by a coupling between optomechanically-induced transparency(OMIT)and electromagnetically-induced transparency.The effects of optical loss(gain)in the cavity,number and topology of active cavity,tunneling ratio,and pump laser power on the CIT spectrum are evaluated and analyzed.Moreover,the optical group delay of CIT is highly controllable and fast–slow light inter-transition can be achieved.The proposed structure makes possible the advantageous tuning freedom and provides a potential platform for controlling light propagation and fast–slow light switching.展开更多
Due to interaction with the vacuum of the radiation field,a K-type atomic system with near-degenerateexcited and ground levels,which is driven by two strong coherent fields and two weak probe fields,has additional coh...Due to interaction with the vacuum of the radiation field,a K-type atomic system with near-degenerateexcited and ground levels,which is driven by two strong coherent fields and two weak probe fields,has additional coherenceterms—the vacuum-induced coherence (VIC) terms.In this paper,we find that,if the interference is optimized,thetwo-photon absorption properties of this atom system can be significantly modified and electromagnetically-inducedtransparency (EIT) is dependent on this interference.Furthermore,we find that in all the cases the coherence can suppressor enhance the partial two-photon transparency,while the complete transparency window is still strictly preserved,whichmeans that it cannot be affected by the VIC.Another important result is the finding of the crucial role played by therelative phase between the probe and coupling fields:the relative height of absorption peaks can be modulated by therelative phase.The physical interpretation of the phenomena has been given.展开更多
In theory, we study the quantum tluctuatlons ot tlae suDllarmonlc renecteu nela Irom a ulplc-rc^ulltUtt IdU^ClIClatC optical parametric amplifier (OPA) inside an optical cavity. We discuss two cases, where the linew...In theory, we study the quantum tluctuatlons ot tlae suDllarmonlc renecteu nela Irom a ulplc-rc^ulltUtt IdU^ClIClatC optical parametric amplifier (OPA) inside an optical cavity. We discuss two cases, where the linewidth of the harmonic field is either much narrower or broader than the subharmonic field. Since an electromagnetically-induced-transparency (EIT)-like effect can be simulated in a triple-resonant OPA, the output spectra from a triple-resonant OPA with a squeezed vacuum input may simulate the phenomenon of the response of an EIT medium for squeezed states. This scheme can be implemented with present experimental setups.展开更多
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11404330,11274376,61308011,and 11474347)the NSAF,China(Grant No.U1330117)+1 种基金the National Basic Research Program of China(Grant Nos.2013CB922002 and 2010CB922904)the China Postdoctoral Science Foundation(Grant No.119103S239)
文摘We study the relationship between electromagnetically-induced transparency(EIT) and Autler–Townes(AT) splitting in a cascade three-level Doppler-broadened system. By comparing the absorption spectrum with the fluorescence excitation spectrum, it is found that for a Doppler-broadened system, EIT resonance cannot be explained as the result of quantum interference, unlike the case of a homogeneously broadened system. Instead, the macroscopic polarization interference plays an important role in determining the spectra of EIT and AT splitting, which can be explained within the same framework when being detected by the absorption spectra.
基金supported in part by the Academy of Science for the Developing World (TWAS)
文摘It is well known that an optical trap can be imprinted by a light field in an ultracold-atom system embedded in an optical cavity, and driven by three different coherent fields. Of the three felds coexisting in the optical cavity there is an intense control field that induces a giant Kerr nonlinearity via electromagnetically-induced transparency, and another feld that creates a periodic optical grating of strength proportional to the square of the associated Rabi frequency. In this work elliptic-soliton solutions to the nonlinear equation governing the propagation of the probe field are considered, with emphasis on the possible generation of optical soliton trains forming a discrete spectrum with well defined quantum numbers. The problem is treated assuming two distinct types of periodic optical gratings and taking into account the negative and positive signs of detunings (detuning above or below resonance). Results predict that the competition between the self-phase and cross-phase modulation nonlinearities gives rise to a rich family of temporal soliton train modes characterized by distinct quantum numbers.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.10974252,11274376,60978002,and 11179041)the National Basic Research Program of China(Grant No.2010CB922904)+2 种基金the National High Technology Research and Development Program of China(Grant No.2011AA120102)the Natural Science Foundation of Inner Mongolia,China(Grants No.2012MS0101)the Innovation Fund of Inner Mongolia University of Science and Technology,China(Grants No.2010NC064)
文摘We study the electromagnetically-induced transparency(EIT) in a Doppler-broadened cascaded three-level system.We decompose the susceptibility responsible for the EIT resonance into a linear and a nonlinear part, and the EIT resonance reflects mainly the characteristics of the nonlinear susceptibility. It is found that the macroscopic polarization interference effect plays a crucial role in determining the EIT resonance spectrum. To obtain a Doppler-free spectrum there must be polarization interference between atoms of different velocities. A dressed-state model, which analyzes the velocities at which the atoms are in resonance with the dressed states through Doppler frequency shifting, is employed to explain the results.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61475091 and 61227902)the National Key Research and Development Program of China(Grant No.2017YFA0304502)the Scientific and Technological Innovation Programs of Higher Education Institutions in Shanxi,China(Grant No.2017101)
文摘A velocity-selective spectroscopy technique for studying the spectra of Rydberg gases is presented. This method provides high-resolution spectrum measurements. We present experimental results for a ladder system 6S1/2→ 6P3/2→ nS(D)electromagnetically-induced transparency involving highly-excited Rydberg states. Based on a radio-frequency modulation technique, we measure the hyperfine structure splitting of intermediate states and the fine structure splitting of Rydberg states in a room temperature ^133Cs vapor cell. The experimental data and theoretical predictions show excellent agreement.
基金Project supported by the National Natural Science Foundation of China(Grant No.61575014)。
文摘We propose a three-cavity coupled cavity optomechanical(COM)structure with tunable system parameters and theoretically investigate the probe-light transmission rate.Numerical calculation of the system’s spectra demonstrates distinctive compound-induced transparency(CIT)characteristics,including multiple transparency windows and sideband dips,which can be explained by a coupling between optomechanically-induced transparency(OMIT)and electromagnetically-induced transparency.The effects of optical loss(gain)in the cavity,number and topology of active cavity,tunneling ratio,and pump laser power on the CIT spectrum are evaluated and analyzed.Moreover,the optical group delay of CIT is highly controllable and fast–slow light inter-transition can be achieved.The proposed structure makes possible the advantageous tuning freedom and provides a potential platform for controlling light propagation and fast–slow light switching.
基金National Natural Science Foundation of China under Grant Nos.90503088 and 10775100the Fund of Theoretical Nuclear Center of HIRFL of China
文摘Due to interaction with the vacuum of the radiation field,a K-type atomic system with near-degenerateexcited and ground levels,which is driven by two strong coherent fields and two weak probe fields,has additional coherenceterms—the vacuum-induced coherence (VIC) terms.In this paper,we find that,if the interference is optimized,thetwo-photon absorption properties of this atom system can be significantly modified and electromagnetically-inducedtransparency (EIT) is dependent on this interference.Furthermore,we find that in all the cases the coherence can suppressor enhance the partial two-photon transparency,while the complete transparency window is still strictly preserved,whichmeans that it cannot be affected by the VIC.Another important result is the finding of the crucial role played by therelative phase between the probe and coupling fields:the relative height of absorption peaks can be modulated by therelative phase.The physical interpretation of the phenomena has been given.
基金supported by the National Basic Research Program of China (Grant No. 2011CB921601)the National Natural Science Foundation of China for Excellent Research Team (Grant No. 61121064)+1 种基金the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20111401130001)the Graduate Outstanding Innovation Item of Shanxi Province, China (Grant No. 20113001)
文摘In theory, we study the quantum tluctuatlons ot tlae suDllarmonlc renecteu nela Irom a ulplc-rc^ulltUtt IdU^ClIClatC optical parametric amplifier (OPA) inside an optical cavity. We discuss two cases, where the linewidth of the harmonic field is either much narrower or broader than the subharmonic field. Since an electromagnetically-induced-transparency (EIT)-like effect can be simulated in a triple-resonant OPA, the output spectra from a triple-resonant OPA with a squeezed vacuum input may simulate the phenomenon of the response of an EIT medium for squeezed states. This scheme can be implemented with present experimental setups.