能量采集技术是发展绿色智能交通系统的重要途径.与电池和电缆供电方式相比,从交通环境中收集机械能并将其转化为电能能为智能交通系统中分布的微机电系统供电,且具有便捷、可持续、绿色低碳等优点.本文设计了一种摩擦-电磁复合式能量...能量采集技术是发展绿色智能交通系统的重要途径.与电池和电缆供电方式相比,从交通环境中收集机械能并将其转化为电能能为智能交通系统中分布的微机电系统供电,且具有便捷、可持续、绿色低碳等优点.本文设计了一种摩擦-电磁复合式能量回收带(Hybrid Triboelectric-Electromagnetic Energy Harvesting Bump,HTEEHB),主要由电磁发电单元和摩擦发电单元组成,电磁发电单元磁体线圈交错排列,以提高空间利用率和增加功率密度;摩擦电单元采用改性聚二甲基硅氧烷复合材料组装的折叠结构,可显著提高输出功率.通过磁力和弹性体的双重作用力进行复位,可避免传统弹簧复位需要精密导向机构的缺点.基于HTEEHB工作原理,建立机电耦合动力学模型并进行试验验证,证明了磁力复位的有效性.试验结果表明,在激励频率为5Hz,受力为15N时,左右两侧摩擦发电单元产生的最大平均功率分别为353.1μW和360μW,电磁发电产生的平均功率为6.67μW.该装置收集车辆滚动能量,可为交通环境中的小型器件提供可持续的绿色无碳动力.展开更多
文摘能量采集技术是发展绿色智能交通系统的重要途径.与电池和电缆供电方式相比,从交通环境中收集机械能并将其转化为电能能为智能交通系统中分布的微机电系统供电,且具有便捷、可持续、绿色低碳等优点.本文设计了一种摩擦-电磁复合式能量回收带(Hybrid Triboelectric-Electromagnetic Energy Harvesting Bump,HTEEHB),主要由电磁发电单元和摩擦发电单元组成,电磁发电单元磁体线圈交错排列,以提高空间利用率和增加功率密度;摩擦电单元采用改性聚二甲基硅氧烷复合材料组装的折叠结构,可显著提高输出功率.通过磁力和弹性体的双重作用力进行复位,可避免传统弹簧复位需要精密导向机构的缺点.基于HTEEHB工作原理,建立机电耦合动力学模型并进行试验验证,证明了磁力复位的有效性.试验结果表明,在激励频率为5Hz,受力为15N时,左右两侧摩擦发电单元产生的最大平均功率分别为353.1μW和360μW,电磁发电产生的平均功率为6.67μW.该装置收集车辆滚动能量,可为交通环境中的小型器件提供可持续的绿色无碳动力.