Considering the emergence of severe electromagnetic interference problems,it is vital to develop electromagnetic(EM)wave absorbing materials with high dielectric,magnetic loss and optimized impedance matching.However,...Considering the emergence of severe electromagnetic interference problems,it is vital to develop electromagnetic(EM)wave absorbing materials with high dielectric,magnetic loss and optimized impedance matching.However,realizing the synergistic dielectric and magnetic losses in a single phase material is still a challenge.Herein,high entropy(HE)rare earth hexaborides(REB6)powders with coupling of dielectric and magnetic losses were designed and successfully synthesized through a facial one-step boron carbide reduction method,and the effects of high entropy borates intermedia phases on the EM wave absorption properties were investigated.Five HE REB6 ceramics including(Ce0.2Y0.2Sm0.2Er0.2Yb0.2)B6,(Ce0.2Hu0.2Sm0.2Er0.2Yb0.2)B6,(Ce0.2Y0.2Eu0.2Er0.2Yb0.2)B6,(Ce0.2Ya2Sm0.2Eu0.2Yb0.2)B6,and(Nd0.2Y0.2Sm0.2Eu0.2Yb0.2)B6 possess CsCl-type cubic crystal structure,and their theoretical densities range from 4.84 to 5.25 g/cm^(3).(Ce02Y0.2Sm0.2Er0.2Yb02)B6 powders with the average particle size of 1.86 jim were found to possess the best EM wave absorption properties among these hexaborides.The RLmin value of(Ce0.2Y0.2Sm0.2Er0.2Yb0.2)B6 reaches-33.4 dB at 11.5 GHz at thickness of 2 mm;meanwhile,the optimized effective absorption bandwidth(EAB)is 3.9 GHz from 13.6 to 17.5 GHz with a thickness of 1.5 mm.The introduction of HE REB03(RE=Ce,Y,Sm,Eu,Er,Yb)as intermediate phase will give rise to the mismatching impedance,which will further lead to the reduction of reflection loss.Intriguingly,the HEREB6/HEREB03 still possess wide effective absorption bandwidth of 4.1 GHz with the relative low thickness of 1.7 mm.Considering the better stability,low density,and good EM wave absorption properties,HE REB6 ceramics are promising as a new type of EM wave absorbing materials.展开更多
The increasing electromagnetic hazards including electromagnetic interference and electromagnetic pollution,which were stemmed from massive usage of electromagnetic technology,have triggered widespread concerns.To cop...The increasing electromagnetic hazards including electromagnetic interference and electromagnetic pollution,which were stemmed from massive usage of electromagnetic technology,have triggered widespread concerns.To cope with this challenge,electromagnetic wave absorbing materials with high performance are greatly needed.Composite construction has been widely applied in electromagnetic(EM)wave absorbing materials to achieve high permittivity,high permeability and impedance matching.However,high-temperature stability,oxidation and corrosion resistance are still unignorable issues.Herein,high entropy hexaborides/tetraborides(HE REB_(6)/HE REB_(4))composites with synergistic dielectric and magnetic losses were designed and successfully synthesized through a one-step boron carbide reduction method.The five as-prepared(Y_(0.2) Nd_(0.2) Sm_(0.2) Eu_(0.2) Er_(0.2))B_(6)/(Y_(0.2) Nd_(0.2) Sm_(0.2) Eu_(0.2) Er_(0.2))B_(4),(Y_(0.2) Nd_(0.2) Sm_(0.2) Er_(0.2) Yb_(0.2))B_(6)/(Y_(0.2) Nd_(0.2) Sm_(0.2) Er_(0.2) Yb_(0.2))B_(4),(Y_(0.2) Nd_(0.2) Eu_(0.2) Er_(0.2) Yb_(0.2))B_(6)/(Y_(0.2) Nd_(0.2) Eu_(0.2) Er_(0.2) Yb_(0.2))B_(4),(Nd_(0.2) Sm_(0.2) Eu_(0.2) Er_(0.2) Yb_(0.2))B_(6)/(Nd_(0.2) Sm_(0.2) Eu_(0.2) Er_(0.2) Yb_(0.2))B_(4) and(Y_(0.2) Sm_(0.2) Eu_(0.2) Er_(0.2) Yb_(0.2))B_(6)/(Y_(0.2) Sm_(0.2) Eu_(0.2) Er_(0.2) Yb_(0.2))B_(4) contain two phases of HE REB_(6) and HE REB_(4).Among them(Y_(0.2) Nd_(0.2) Sm_(0.2) Eu_(0.2) Er_(0.2))B_(6)/(Y_(0.2) Nd_(0.2) Sm_(0.2) Eu_(0.2) Er_(0.2))B_(4)(HE REB_(6)/HE REB_(4)-1)and(Y_(0.2) Nd_(0.2) Sm_(0.2) Er_(0.2) Yb_(0.2))B_(6)/(Y_(0.2) Nd_(0.2) Sm_(0.2) Er_(0.2) Yb_(0.2))B_(4)(HE REB_(6)/HE REB_(4)-2)exhibit excellent EM wave absorption properties.The optimal minimum reflection loss(RL_(m in))and effective absorption bandwidth(E_(AB))of HE REB_(6)/HE REB_(4)-1 and HE REB_(6)/HE REB_(4)-2 are–53.3 dB(at 1.7 mm),4.2 GHz(at 1.5 mm)and–43.5 dB(1.3 mm),4.2 GHz(1.5 mm),respectively.The combination of conducting HE REB_(4) with magnetism into HE REB_(6) as a second phase enhances dielectric an展开更多
The explosive development of electronic devices and wireless communication technology gives rise to the issue of electromagnetic pollution,known as electromagnetic interference(EMI).The accumulation of undesirable ele...The explosive development of electronic devices and wireless communication technology gives rise to the issue of electromagnetic pollution,known as electromagnetic interference(EMI).The accumulation of undesirable electromagnetic radiation in space disturbs the normal function of unshielded electronic appliances and poses seriously threat to human health.Thus,the development of EMI shielding materials have emerged to solve the grim problem.Considering the complex application contexts,EMI shielding materials have evolved from traditional single-function to multi-functions to meet the ever-increasing application requirements in recent few years.This paper provides detailed insight into the current re-search status and future challenges in the advancement of polymer-based EMI shielding materials with various functions.First,the basic theory of EMI shielding,factors influencing results and the dominating characterization technologies for EMI shielding properties are summarized.Then,the comprehensive descriptions of the seven types of multifunctional EMI shields are provided with respect to their structures,fabrication methods and specific functions.Meanwhile,the corresponding critical scientific and technical issues are proposed.Based on our comprehensive analysis,the main challenges in the development of multifunctional EMI shielding materials are presented.This review aims to provide some guidance and inspire more efforts toward functional EMI shielding material research to satisfy the growing requirements for next-generation electronic systems.展开更多
The cavity-mode resonance effect could result in significant degradation of the shielding effectiveness (SE) of a shielding enclosure around its resonance frequencies. In this paper, the influence of coated wall los...The cavity-mode resonance effect could result in significant degradation of the shielding effectiveness (SE) of a shielding enclosure around its resonance frequencies. In this paper, the influence of coated wall loss on the suppression of the resonance effect is investigated. For this purpose, an equivalent circuit model is employed to analyze the SE of an apertured rectangular cavity coated with an inside layer of resistive material. The model is developed by extending Robinson's equivalent circuit model through incorporating the effect of the wall loss into both the propagation constant and the characteristic impedance of the waveguide. Calculation results show that the wall loss could lead to great improvement on the SE for frequencies near the resonance but almost no effect on the SE for frequencies far away from the resonance.展开更多
Among the most intense emissions in the Earth's magnetosphere,electromagnetic ion cyclotron(EMIC)waves are regarded as a critical candidate contributing to the precipitation losses of ring current protons,which ho...Among the most intense emissions in the Earth's magnetosphere,electromagnetic ion cyclotron(EMIC)waves are regarded as a critical candidate contributing to the precipitation losses of ring current protons,which however lacks direct multi-point observations to establish the underlying physical connection.Based upon a robust conjunction between the satellite pair of Van Allen Probe B and NOAA-19,we perform a detailed analysis to capture simultaneous enhancements of EMIC waves and ring current proton precipitation.By assuming that the ring current proton precipitation is mainly caused by EMIC wave scattering,we establish a physical model between the wave-driven proton diffusion and the ratio of precipitated-to-trapped proton count rates,which is subsequently applied to infer the intensity of EMIC waves required to cause the observed proton precipitation.Our simulations indicate that the model results of EMIC wave intensity,obtained using either the observed or empirical Gaussian wave frequency spectrum,are consistent with the wave observations,within a factor of 1.5.Our study therefore strongly supports the dominant contribution of EMIC waves to the ring current proton precipitation,and offers a valuable means to construct the global profile of EMIC wave intensity using low-altitude NOAA POES proton measurements,which generally have a broad L-shell coverage and high time resolution in favor of near-real-time conversion of the global EMIC wave distribution.展开更多
For an accurate estimation of the AC losses of superconducting triaxial cables,in this paper we present a two‐dimensional model capable to provide a global assessment of multi‐layer triaxial cables,validated against...For an accurate estimation of the AC losses of superconducting triaxial cables,in this paper we present a two‐dimensional model capable to provide a global assessment of multi‐layer triaxial cables,validated against the reported AC‐losses measurements on single‐phase cables provided by the Russian Scientific and Research Institute of the Cable Industry(VNIIKP).Four models are presented,the first being a single‐phase cable of 50 tapes and the others being three triaxial cables made of up to 135 coated conductors distributed in up to 9 layers.A systematic study is devised,where the number of layers per phase increases from 1 to 3,with at least 14 tapes distributed across each layer of the first(innermost)phase,15 in the secondary(middle)phase,and 16 in the third(outermost)phase,respectively.Remarkably,our results reveal that the simple strategy of considering an unbalanced distribution for the amplitudes of the applied current,can generally balance the magnetic field between the three phases even for the bilayer and trilayer cables,resulting in negligible magnetic leaks in all situations.Besides,our high‐resolution simulations allow to see for the first time how the transport and magnetization currents distribute across the thickness of all the superconducting tapes,from which we have found that the AC‐losses of the 2nd phase is generally higher than at the other phases at low to moderate transport currents,I_(tr)<0:8I c,being I_(c) the critical current of the corresponding tapes.Nevertheless,depending on whether the I_(c) of the SC tapes at the 3rd phase layers is lower than the one at the 2nd phase,the layers at the third phase can exhibit a considerable increment on the AC losses.This is result of the considered magneto angular anisotropy of the superconducting tapes,which lead to intriguing electromagnetic features that suggest a practical threshold for the applied transport current,being it 0:8I_(c).Likewise,the relative change in the AC‐losses per adding layers,per phase,and as a function of t展开更多
Ultrafast electromagnetic waves radiated from semiconductor material under high electric fields and photoexcited by femtosecond laser pulses have been recorded by using terahertz time domain spectroscopy (THz-TDS).T...Ultrafast electromagnetic waves radiated from semiconductor material under high electric fields and photoexcited by femtosecond laser pulses have been recorded by using terahertz time domain spectroscopy (THz-TDS).The waveforms of these electromagnetic waves reflect the dynamics of the photoexcited carriers in the semiconductor material,thus,THz-TDS provides a unique opportunity to observe directly the temporal and spatial evolutions of non-equilibrium transport of carriers within sub-picosecond time scale.We report on the observed THz emission waveforms emitted from GaAs by using a novel technology,the time domain THz electro-optic (EO) sampling,which has a bipolar feature,i.e.,an initial positive peak and a subsequent negative dip that arises from its velocity overshoot.The initial positive peak has been interpreted as electron acceleration in the bottom of Γ valley in GaAs,where electrons have a light effective mass.The subsequent negative dip has been attributed to intervalley transfer from Γ to X and L valleys.Furthermore,the power dissipation spectra of the bulk GaAs in THz range are also investigated by using the Fourier transformation of the time domain THz traces.From the power dissipation spectra,the cutoff frequency for negative power dissipation (i.e.,gain) under step electric field in the bulk GaAs can also be obtained.The cutoff frequency for the gain gradually increases with increasing electric fields up to 50 kV/cm and achieves saturation at approximately 1 THz at 300 K.Furthermore,based on the temperature dependence of the cutoff frequency,we find that this cutoff frequency is governed by the energy relaxation process of electrons from L to Γ valley via successive optical phonon emission.展开更多
We obtain the photonic bands and intrinsic losses for the triangular lattice three-component two- dimensional (2D) photonic crystal (PhC) slabs by expanding the electromagnetic field on the basis of waveguide mode...We obtain the photonic bands and intrinsic losses for the triangular lattice three-component two- dimensional (2D) photonic crystal (PhC) slabs by expanding the electromagnetic field on the basis of waveguide modes of an effective homogeneous waveguide. The introduction of the third component into the 2D PhC slabs influences the photonic band structure and the intrinsic losses of the system. We examine the dependences of the band gap width and gap edge position on the interlayer dielectric constant and interlayer thickness. It is found that the gap edges shift to lower frequencies and the intrinsic losses of each band decrease with the increasing interlayer thickness or dielectric constant. During the design of the real PhC system, the effect of unintentional native oxide surface layer on the optical properties of 2D PhC slabs has to be taken into consideration. At the same time, intentional oxidization of macroporous PhC structure can be utilized to optimize the design.展开更多
基金the National Natural Science Foundation of China under Grant Nos.51972089,51672064,U1435206.
文摘Considering the emergence of severe electromagnetic interference problems,it is vital to develop electromagnetic(EM)wave absorbing materials with high dielectric,magnetic loss and optimized impedance matching.However,realizing the synergistic dielectric and magnetic losses in a single phase material is still a challenge.Herein,high entropy(HE)rare earth hexaborides(REB6)powders with coupling of dielectric and magnetic losses were designed and successfully synthesized through a facial one-step boron carbide reduction method,and the effects of high entropy borates intermedia phases on the EM wave absorption properties were investigated.Five HE REB6 ceramics including(Ce0.2Y0.2Sm0.2Er0.2Yb0.2)B6,(Ce0.2Hu0.2Sm0.2Er0.2Yb0.2)B6,(Ce0.2Y0.2Eu0.2Er0.2Yb0.2)B6,(Ce0.2Ya2Sm0.2Eu0.2Yb0.2)B6,and(Nd0.2Y0.2Sm0.2Eu0.2Yb0.2)B6 possess CsCl-type cubic crystal structure,and their theoretical densities range from 4.84 to 5.25 g/cm^(3).(Ce02Y0.2Sm0.2Er0.2Yb02)B6 powders with the average particle size of 1.86 jim were found to possess the best EM wave absorption properties among these hexaborides.The RLmin value of(Ce0.2Y0.2Sm0.2Er0.2Yb0.2)B6 reaches-33.4 dB at 11.5 GHz at thickness of 2 mm;meanwhile,the optimized effective absorption bandwidth(EAB)is 3.9 GHz from 13.6 to 17.5 GHz with a thickness of 1.5 mm.The introduction of HE REB03(RE=Ce,Y,Sm,Eu,Er,Yb)as intermediate phase will give rise to the mismatching impedance,which will further lead to the reduction of reflection loss.Intriguingly,the HEREB6/HEREB03 still possess wide effective absorption bandwidth of 4.1 GHz with the relative low thickness of 1.7 mm.Considering the better stability,low density,and good EM wave absorption properties,HE REB6 ceramics are promising as a new type of EM wave absorbing materials.
基金financially supported by the National Natural Science Foundation of China(Nos.51972089,51672064 and U1435206)。
文摘The increasing electromagnetic hazards including electromagnetic interference and electromagnetic pollution,which were stemmed from massive usage of electromagnetic technology,have triggered widespread concerns.To cope with this challenge,electromagnetic wave absorbing materials with high performance are greatly needed.Composite construction has been widely applied in electromagnetic(EM)wave absorbing materials to achieve high permittivity,high permeability and impedance matching.However,high-temperature stability,oxidation and corrosion resistance are still unignorable issues.Herein,high entropy hexaborides/tetraborides(HE REB_(6)/HE REB_(4))composites with synergistic dielectric and magnetic losses were designed and successfully synthesized through a one-step boron carbide reduction method.The five as-prepared(Y_(0.2) Nd_(0.2) Sm_(0.2) Eu_(0.2) Er_(0.2))B_(6)/(Y_(0.2) Nd_(0.2) Sm_(0.2) Eu_(0.2) Er_(0.2))B_(4),(Y_(0.2) Nd_(0.2) Sm_(0.2) Er_(0.2) Yb_(0.2))B_(6)/(Y_(0.2) Nd_(0.2) Sm_(0.2) Er_(0.2) Yb_(0.2))B_(4),(Y_(0.2) Nd_(0.2) Eu_(0.2) Er_(0.2) Yb_(0.2))B_(6)/(Y_(0.2) Nd_(0.2) Eu_(0.2) Er_(0.2) Yb_(0.2))B_(4),(Nd_(0.2) Sm_(0.2) Eu_(0.2) Er_(0.2) Yb_(0.2))B_(6)/(Nd_(0.2) Sm_(0.2) Eu_(0.2) Er_(0.2) Yb_(0.2))B_(4) and(Y_(0.2) Sm_(0.2) Eu_(0.2) Er_(0.2) Yb_(0.2))B_(6)/(Y_(0.2) Sm_(0.2) Eu_(0.2) Er_(0.2) Yb_(0.2))B_(4) contain two phases of HE REB_(6) and HE REB_(4).Among them(Y_(0.2) Nd_(0.2) Sm_(0.2) Eu_(0.2) Er_(0.2))B_(6)/(Y_(0.2) Nd_(0.2) Sm_(0.2) Eu_(0.2) Er_(0.2))B_(4)(HE REB_(6)/HE REB_(4)-1)and(Y_(0.2) Nd_(0.2) Sm_(0.2) Er_(0.2) Yb_(0.2))B_(6)/(Y_(0.2) Nd_(0.2) Sm_(0.2) Er_(0.2) Yb_(0.2))B_(4)(HE REB_(6)/HE REB_(4)-2)exhibit excellent EM wave absorption properties.The optimal minimum reflection loss(RL_(m in))and effective absorption bandwidth(E_(AB))of HE REB_(6)/HE REB_(4)-1 and HE REB_(6)/HE REB_(4)-2 are–53.3 dB(at 1.7 mm),4.2 GHz(at 1.5 mm)and–43.5 dB(1.3 mm),4.2 GHz(1.5 mm),respectively.The combination of conducting HE REB_(4) with magnetism into HE REB_(6) as a second phase enhances dielectric an
基金financial support of this work by National Natural Science Foundation of China(Nos.51922071,82172534)1·3·5 project for disciplines of excellence,West China Hospital,Sichuan University(No.ZYJC21038)State Key Laboratory of Polymer Materials Engineering(No.sklpme2020–2-02).
文摘The explosive development of electronic devices and wireless communication technology gives rise to the issue of electromagnetic pollution,known as electromagnetic interference(EMI).The accumulation of undesirable electromagnetic radiation in space disturbs the normal function of unshielded electronic appliances and poses seriously threat to human health.Thus,the development of EMI shielding materials have emerged to solve the grim problem.Considering the complex application contexts,EMI shielding materials have evolved from traditional single-function to multi-functions to meet the ever-increasing application requirements in recent few years.This paper provides detailed insight into the current re-search status and future challenges in the advancement of polymer-based EMI shielding materials with various functions.First,the basic theory of EMI shielding,factors influencing results and the dominating characterization technologies for EMI shielding properties are summarized.Then,the comprehensive descriptions of the seven types of multifunctional EMI shields are provided with respect to their structures,fabrication methods and specific functions.Meanwhile,the corresponding critical scientific and technical issues are proposed.Based on our comprehensive analysis,the main challenges in the development of multifunctional EMI shielding materials are presented.This review aims to provide some guidance and inspire more efforts toward functional EMI shielding material research to satisfy the growing requirements for next-generation electronic systems.
基金supported by the National Natural Science Foundation of China(Grant No.51037001)
文摘The cavity-mode resonance effect could result in significant degradation of the shielding effectiveness (SE) of a shielding enclosure around its resonance frequencies. In this paper, the influence of coated wall loss on the suppression of the resonance effect is investigated. For this purpose, an equivalent circuit model is employed to analyze the SE of an apertured rectangular cavity coated with an inside layer of resistive material. The model is developed by extending Robinson's equivalent circuit model through incorporating the effect of the wall loss into both the propagation constant and the characteristic impedance of the waveguide. Calculation results show that the wall loss could lead to great improvement on the SE for frequencies near the resonance but almost no effect on the SE for frequencies far away from the resonance.
基金supported by the National Natural Science Foundation of China (42188101 and 42025404)the National Key R&D Program of China (2022YFF0503700)+2 种基金the B-type Strategic Priority Program of the Chinese Academy of Sciences (XDB41000000)the Fundamental Research Funds for the Central Universities (2042021kf1045,2042021kf1056)the Pre-research projects on Civil Aerospace Technologies (D020308,D020104,D020303).
文摘Among the most intense emissions in the Earth's magnetosphere,electromagnetic ion cyclotron(EMIC)waves are regarded as a critical candidate contributing to the precipitation losses of ring current protons,which however lacks direct multi-point observations to establish the underlying physical connection.Based upon a robust conjunction between the satellite pair of Van Allen Probe B and NOAA-19,we perform a detailed analysis to capture simultaneous enhancements of EMIC waves and ring current proton precipitation.By assuming that the ring current proton precipitation is mainly caused by EMIC wave scattering,we establish a physical model between the wave-driven proton diffusion and the ratio of precipitated-to-trapped proton count rates,which is subsequently applied to infer the intensity of EMIC waves required to cause the observed proton precipitation.Our simulations indicate that the model results of EMIC wave intensity,obtained using either the observed or empirical Gaussian wave frequency spectrum,are consistent with the wave observations,within a factor of 1.5.Our study therefore strongly supports the dominant contribution of EMIC waves to the ring current proton precipitation,and offers a valuable means to construct the global profile of EMIC wave intensity using low-altitude NOAA POES proton measurements,which generally have a broad L-shell coverage and high time resolution in favor of near-real-time conversion of the global EMIC wave distribution.
基金supported by the UK Research and Innovation,Engineering and Physical Sciences Research Council(EPSRC),grant Ref.EP/S025707/1,led by H.S.R.
文摘For an accurate estimation of the AC losses of superconducting triaxial cables,in this paper we present a two‐dimensional model capable to provide a global assessment of multi‐layer triaxial cables,validated against the reported AC‐losses measurements on single‐phase cables provided by the Russian Scientific and Research Institute of the Cable Industry(VNIIKP).Four models are presented,the first being a single‐phase cable of 50 tapes and the others being three triaxial cables made of up to 135 coated conductors distributed in up to 9 layers.A systematic study is devised,where the number of layers per phase increases from 1 to 3,with at least 14 tapes distributed across each layer of the first(innermost)phase,15 in the secondary(middle)phase,and 16 in the third(outermost)phase,respectively.Remarkably,our results reveal that the simple strategy of considering an unbalanced distribution for the amplitudes of the applied current,can generally balance the magnetic field between the three phases even for the bilayer and trilayer cables,resulting in negligible magnetic leaks in all situations.Besides,our high‐resolution simulations allow to see for the first time how the transport and magnetization currents distribute across the thickness of all the superconducting tapes,from which we have found that the AC‐losses of the 2nd phase is generally higher than at the other phases at low to moderate transport currents,I_(tr)<0:8I c,being I_(c) the critical current of the corresponding tapes.Nevertheless,depending on whether the I_(c) of the SC tapes at the 3rd phase layers is lower than the one at the 2nd phase,the layers at the third phase can exhibit a considerable increment on the AC losses.This is result of the considered magneto angular anisotropy of the superconducting tapes,which lead to intriguing electromagnetic features that suggest a practical threshold for the applied transport current,being it 0:8I_(c).Likewise,the relative change in the AC‐losses per adding layers,per phase,and as a function of t
基金supported by the Nanotechnology Special Project of Science and Technology Commission of Shanghai (No. 1052nm07100)the Ministry of Education Doctoral Fund of New Teachers of China (No. 20093120120007)the National Natural Science Foundation of China (No. 61007059)
文摘Ultrafast electromagnetic waves radiated from semiconductor material under high electric fields and photoexcited by femtosecond laser pulses have been recorded by using terahertz time domain spectroscopy (THz-TDS).The waveforms of these electromagnetic waves reflect the dynamics of the photoexcited carriers in the semiconductor material,thus,THz-TDS provides a unique opportunity to observe directly the temporal and spatial evolutions of non-equilibrium transport of carriers within sub-picosecond time scale.We report on the observed THz emission waveforms emitted from GaAs by using a novel technology,the time domain THz electro-optic (EO) sampling,which has a bipolar feature,i.e.,an initial positive peak and a subsequent negative dip that arises from its velocity overshoot.The initial positive peak has been interpreted as electron acceleration in the bottom of Γ valley in GaAs,where electrons have a light effective mass.The subsequent negative dip has been attributed to intervalley transfer from Γ to X and L valleys.Furthermore,the power dissipation spectra of the bulk GaAs in THz range are also investigated by using the Fourier transformation of the time domain THz traces.From the power dissipation spectra,the cutoff frequency for negative power dissipation (i.e.,gain) under step electric field in the bulk GaAs can also be obtained.The cutoff frequency for the gain gradually increases with increasing electric fields up to 50 kV/cm and achieves saturation at approximately 1 THz at 300 K.Furthermore,based on the temperature dependence of the cutoff frequency,we find that this cutoff frequency is governed by the energy relaxation process of electrons from L to Γ valley via successive optical phonon emission.
基金supported in part by the National Natural Science Foundation of China (No. 60707001,60711140087)the National "973" Program of China(No. 2007CB310705)+4 种基金the National "863" Program of China (No. 2007AA01Z247)NCET (07-0110)PCSIRT(No. IRT0609)ISTCP (No. 2006DFA11040)P. R.China
文摘We obtain the photonic bands and intrinsic losses for the triangular lattice three-component two- dimensional (2D) photonic crystal (PhC) slabs by expanding the electromagnetic field on the basis of waveguide modes of an effective homogeneous waveguide. The introduction of the third component into the 2D PhC slabs influences the photonic band structure and the intrinsic losses of the system. We examine the dependences of the band gap width and gap edge position on the interlayer dielectric constant and interlayer thickness. It is found that the gap edges shift to lower frequencies and the intrinsic losses of each band decrease with the increasing interlayer thickness or dielectric constant. During the design of the real PhC system, the effect of unintentional native oxide surface layer on the optical properties of 2D PhC slabs has to be taken into consideration. At the same time, intentional oxidization of macroporous PhC structure can be utilized to optimize the design.