The permanent magnet electromagnetic hybridmagnet (PEHM) has the advantages of low energy consumptionand a large suspension air gap. In this study, an unbalancedPEHM structure is proposed, which combines the advantage...The permanent magnet electromagnetic hybridmagnet (PEHM) has the advantages of low energy consumptionand a large suspension air gap. In this study, an unbalancedPEHM structure is proposed, which combines the advantages ofthe previous hybrid magnet structure. First, by establishing themagnetic circuit model of the new hybrid magnet structure, theinfluence of magnetic field distribution on the working magneticcircuit of the magnet is analyzed, and the method of magneticforce correction calculation of the new structure magnet isgiven. Then, the validity of the magnetic calculation method isverified by the 3D finite element method (FEM). Furthermore, theaverage suspension power force ratio is used as the optimizationgoal, and the system parameters of the hybrid magnet under aworking air gap of 6–10 mm and a load condition of 15000–20000 N are optimized by a genetic algorithm. Compared withthe previous hybrid magnet, the optimized hybrid magnet systemcan maintain lower power consumption under comprehensiveworking conditions.展开更多
基金the Fundamental Research Funds for the Central Universities of China(No.2682017CX050).
文摘The permanent magnet electromagnetic hybridmagnet (PEHM) has the advantages of low energy consumptionand a large suspension air gap. In this study, an unbalancedPEHM structure is proposed, which combines the advantages ofthe previous hybrid magnet structure. First, by establishing themagnetic circuit model of the new hybrid magnet structure, theinfluence of magnetic field distribution on the working magneticcircuit of the magnet is analyzed, and the method of magneticforce correction calculation of the new structure magnet isgiven. Then, the validity of the magnetic calculation method isverified by the 3D finite element method (FEM). Furthermore, theaverage suspension power force ratio is used as the optimizationgoal, and the system parameters of the hybrid magnet under aworking air gap of 6–10 mm and a load condition of 15000–20000 N are optimized by a genetic algorithm. Compared withthe previous hybrid magnet, the optimized hybrid magnet systemcan maintain lower power consumption under comprehensiveworking conditions.