Flexible multifunctional polymer-based electromagnetic interference(EMI)shielding composite films have important application values in the fields of 5G communication technology,wearable electronic devices and artifici...Flexible multifunctional polymer-based electromagnetic interference(EMI)shielding composite films have important application values in the fields of 5G communication technology,wearable electronic devices and artificial intelligence.In this work,Fe_(3)O_(4)/polyamic acid(PAA)nanofiber films are prepared by in-situ polymerization and electrospinning technology,and Ti_(3)C_(2)T_(x)nanosheets are deposited on the surface of the Fe_(3)O_(4)/PAA nanofiber films via vacuum-assisted filtration.Then,Janus Ti_(3)C_(2)T_(x)-(Fe_(3)O_(4)/polyimide(PI))composite films are obtained by thermal imidization.The two sides of the Janus films exhibit completely different properties.The Fe_(3)O_(4)/PI side has excellent hydrophobicity and insulation property,and the Ti_(3)C_(2)T_(x)side has hydrophilicity and terrific conductivity.When the mass fraction of Ti_(3)C_(2)T_(x)is 80 wt.%,the Janus Ti_(3)C_(2)T_(x)-(Fe_(3)O_(4)/PI)composite film has excellent EMI shielding performances and mechanical properties,with EMI shielding effectiveness,tensile strength and Young’s modulus reaching 66 dB,114.5 MPa and 5.8 GPa,respectively.At the same time,electromagnetic waves show different absorption shielding effectiveness(SEA)when incident from two sides of the Janus films.When the electromagnetic waves are incident from the Fe_(3)O_(4)/PI side,the SEA of the Janus film is 58 dB,much higher than that when the electromagnetic waves are incident from the Ti_(3)C_(2)T_(x)side(39 dB).In addition,the Ti_(3)C_(2)T_(x)side of the Janus Ti_(3)C_(2)T_(x)-(Fe_(3)O_(4)/PI)composite films also has excellent electrothermal and photothermal conversion performances.When the applied voltage is 4 V,the stable surface temperature reaches 108°C;when it is irradiated by simulated sunlight with power density of 200 mW/cm2,the stable surface temperature reaches 95℃.展开更多
Currently,as the electromagnetic(EM)environment becomes increasingly complex,single-function EM materials can hardly resist the increasing electromagnetic interference(EMI),and there is an urgent need to develop multi...Currently,as the electromagnetic(EM)environment becomes increasingly complex,single-function EM materials can hardly resist the increasing electromagnetic interference(EMI),and there is an urgent need to develop multifunctional EM materials.In this work,multifunctional WSe_(2)/Co_(3)C was prepared by simple hydrothermal methods.Its dielectric performance and EM response were investigated.Efficient absorption,shielding performance,and energy conversion devices were customized.By tailoring the loading content,WSe_(2)/Co_(3)C can switch between EM absorption and EMI shielding.The maximum shielding effectiveness(SE)of WSe_(2)/Co_(3)C reached 36 dB,and high reflection loss(RL)of-60.28 dB and wide effective absorption bandwidth(EAB)of 6.16 GHz can be obtained at low thickness.The multiple EM attenuation mechanisms brought by the combination of two-dimensional(2D)WSe_(2) and magnetic Co_(3)C are considered to be the main reason for the enhanced EM attenuation ability.The WSe_(2)/Co_(3)C composite provides a viable candidate for developing multifunctional EM materials in 2–18 GHz.展开更多
Advanced electromagnetic devices,as the pillars of the intelligent age,are setting off a grand transformation,redefining the structure of society to present pluralism and diversity.However,the bombardment of electroma...Advanced electromagnetic devices,as the pillars of the intelligent age,are setting off a grand transformation,redefining the structure of society to present pluralism and diversity.However,the bombardment of electromagnetic radiation on society is also increasingly serious along with the growing popularity of"Big Data".Herein,drawing wisdom and inspiration from nature,an eco-mimetic nanoarchitecture is constructed for the first time,highly integrating the advantages of multiple components and structures to exhibit excellent electromagnetic response.Its electromagnetic properties and internal energy conversion can be flexibly regulated by tailoring microstructure with oxidative molecular layer deposition(oMLD),providing a new cognition to frequency-selective microwave absorption.The optimal reflection loss reaches≈−58 dB,and the absorption frequency can be shifted from high frequency to low frequency by increasing the number of oMLD cycles.Meanwhile,a novel electromagnetic absorption surface is designed to enable ultra-wideband absorption,covering almost the entire K and Ka bands.More importantly,an ingenious self-powered device is constructed using the eco-mimetic nanoarchitecture,which can convert electromagnetic radiation into electric energy for recycling.This work offers a new insight into electromagnetic protection and waste energy recycling,presenting a broad application prospect in radar stealth,information communication,aerospace engineering,etc.展开更多
With the continuous advancement of communication technology,the escalating demand for electromagnetic shielding interference(EMI)materials with multifunctional and wideband EMI performance has become urgent.Controllin...With the continuous advancement of communication technology,the escalating demand for electromagnetic shielding interference(EMI)materials with multifunctional and wideband EMI performance has become urgent.Controlling the electrical and magnetic components and designing the EMI material structure have attracted extensive interest,but remain a huge challenge.Herein,we reported the alternating electromagnetic structure composite films composed of hollow metal-organic frameworks/layered MXene/nanocellulose(HMN)by alternating vacuum-assisted filtration process.The HMN composite films exhibit excellent EMI shielding effectiveness performance in the GHz frequency(66.8 dB at Kaband)and THz frequency(114.6 dB at 0.1-4.0 THz).Besides,the HMN composite films also exhibit a high reflection loss of 39.7 dB at 0.7 THz with an effective absorption bandwidth up to 2.1 THz.Moreover,HMN composite films show remarkable photothermal conversion performance,which can reach 104.6℃under 2.0 Sun and 235.4℃under 0.8 W cm^(−2),respectively.The unique micro-and macrostructural design structures will absorb more incident electromagnetic waves via interfacial polarization/multiple scattering and produce more heat energy via the local surface plasmon resonance effect.These features make the HMN composite film a promising candidate for advanced EMI devices for future 6G communication and the protection of electronic equipment in cold environments.展开更多
The strategy of incorporating polymers into MXene-based functional materials has been widely used to improve their mechanical properties,however with inevitable sacrifice of their electrical conductivity and electroma...The strategy of incorporating polymers into MXene-based functional materials has been widely used to improve their mechanical properties,however with inevitable sacrifice of their electrical conductivity and electromagnetic interference(EMI)shielding performance.This study demonstrates a facile yet efficient layering structure design to prepare the highly robust and conductive double-layer Janus films comprised of independent aramid nanofiber(ANF)and Ti3C2Tx MXene/poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate)(PEDOT:PSS)layers.The ANF layer serves to provide good mechanical stability,whilst the MXene/PEDOT:PSS layer ensures excellent electrical conductivity.Doping PEDOT:PSS into the MXene layer enhances the interfacial bonding strength between the MXene and ANF layers and improves the hydrophobicity and water/oxidation resistance of MXene layer.The resultant ANF/MXene-PEDOT:PSS Janus film with a conductive layer thickness of 4.4μm was shown to display low sheet resistance(2.18Ω/sq),good EMI shielding effectiveness(EMI SE of 48.1 dB),high mechanical strength(155.9 MPa),and overall toughness(19.4 MJ/m^(3)).Moreover,the excellent electrical conductivity and light absorption capacity of the MXene-PEDOT:PSS conductive layer mean that these Janus films display multi-source driven heating functions,producing excellent Joule heating(382℃ at 4 V)and photothermal conversion(59.6℃ at 100 mW/m^(2))properties.展开更多
In the induction heating of airport pavement to remove snow and ice,soft magnetic geopolymer composite(SMGC)can be used to gather the dissipated electromagnetic energy,thus enhancing the energy utilization efficiency....In the induction heating of airport pavement to remove snow and ice,soft magnetic geopolymer composite(SMGC)can be used to gather the dissipated electromagnetic energy,thus enhancing the energy utilization efficiency.The aim of this work is to analyze the influence mechanism of iron powder content on the electromagnetic and mechanical performance of SMGC,so as to provide theoretical guidance for the design of soft magnetic layer within airport pavement structure.The results show that the increase of iron powder content reduces the resistance and magnetoresistance of SMGC by decreasing the content of non-magnetic phases between iron powder.However,the reduction of iron powder spacing also provides a shorter transmission path for the inter-particle eddy currents in the SMGC specimen,which enhances the exchange coupling between iron powder,thus increasing the electromagnetic loss.Therefore,the compatibility between magnetic permeability and electromagnetic loss should be considered comprehensively in the mix design of SMGC.In addition,although iron powder can enhance the mechanical properties of SMGC by improving the density of geopolymer matrix,the excessive amount of iron powder can lead to a weak interfacial transition zone between geopolymer matrix and iron powder.According to the induction heating results,optimized SMGC can improve the energy transfer efficiency of induction heating by 24.03%.展开更多
基金supports from the National Natural Science Foundation of China(Nos.U21A2093 and 51903145)Fundamental Research Funds for the Central Universities(No.D5000210627)+1 种基金Y.L.Z.would like to thank the Innovation Foundation for Doctor Dissertation of Northwestern Polytechnical University(No.CX2021107)This work is also financially supported by Polymer Electromagnetic Functional Materials Innovation Team of Shaanxi Sanqin Scholars.
文摘Flexible multifunctional polymer-based electromagnetic interference(EMI)shielding composite films have important application values in the fields of 5G communication technology,wearable electronic devices and artificial intelligence.In this work,Fe_(3)O_(4)/polyamic acid(PAA)nanofiber films are prepared by in-situ polymerization and electrospinning technology,and Ti_(3)C_(2)T_(x)nanosheets are deposited on the surface of the Fe_(3)O_(4)/PAA nanofiber films via vacuum-assisted filtration.Then,Janus Ti_(3)C_(2)T_(x)-(Fe_(3)O_(4)/polyimide(PI))composite films are obtained by thermal imidization.The two sides of the Janus films exhibit completely different properties.The Fe_(3)O_(4)/PI side has excellent hydrophobicity and insulation property,and the Ti_(3)C_(2)T_(x)side has hydrophilicity and terrific conductivity.When the mass fraction of Ti_(3)C_(2)T_(x)is 80 wt.%,the Janus Ti_(3)C_(2)T_(x)-(Fe_(3)O_(4)/PI)composite film has excellent EMI shielding performances and mechanical properties,with EMI shielding effectiveness,tensile strength and Young’s modulus reaching 66 dB,114.5 MPa and 5.8 GPa,respectively.At the same time,electromagnetic waves show different absorption shielding effectiveness(SEA)when incident from two sides of the Janus films.When the electromagnetic waves are incident from the Fe_(3)O_(4)/PI side,the SEA of the Janus film is 58 dB,much higher than that when the electromagnetic waves are incident from the Ti_(3)C_(2)T_(x)side(39 dB).In addition,the Ti_(3)C_(2)T_(x)side of the Janus Ti_(3)C_(2)T_(x)-(Fe_(3)O_(4)/PI)composite films also has excellent electrothermal and photothermal conversion performances.When the applied voltage is 4 V,the stable surface temperature reaches 108°C;when it is irradiated by simulated sunlight with power density of 200 mW/cm2,the stable surface temperature reaches 95℃.
基金supports come from the National Natural Science Foundation of China(Nos.52373280,52177014,51977009,and 12074095)the Heilongjiang Provincial Science Foundation for Distinguished Young Scholars(No.JQ2022A002)the 2020 Central Government’s plan to support the Talent Training Project of the Reform and Development Fund of Local Universities(No.2020YQ02).
文摘Currently,as the electromagnetic(EM)environment becomes increasingly complex,single-function EM materials can hardly resist the increasing electromagnetic interference(EMI),and there is an urgent need to develop multifunctional EM materials.In this work,multifunctional WSe_(2)/Co_(3)C was prepared by simple hydrothermal methods.Its dielectric performance and EM response were investigated.Efficient absorption,shielding performance,and energy conversion devices were customized.By tailoring the loading content,WSe_(2)/Co_(3)C can switch between EM absorption and EMI shielding.The maximum shielding effectiveness(SE)of WSe_(2)/Co_(3)C reached 36 dB,and high reflection loss(RL)of-60.28 dB and wide effective absorption bandwidth(EAB)of 6.16 GHz can be obtained at low thickness.The multiple EM attenuation mechanisms brought by the combination of two-dimensional(2D)WSe_(2) and magnetic Co_(3)C are considered to be the main reason for the enhanced EM attenuation ability.The WSe_(2)/Co_(3)C composite provides a viable candidate for developing multifunctional EM materials in 2–18 GHz.
基金supported by National Natural Science Foundation of China(No.52177014,52273257,51977009,11774027,51372282,and 51132002).
文摘Advanced electromagnetic devices,as the pillars of the intelligent age,are setting off a grand transformation,redefining the structure of society to present pluralism and diversity.However,the bombardment of electromagnetic radiation on society is also increasingly serious along with the growing popularity of"Big Data".Herein,drawing wisdom and inspiration from nature,an eco-mimetic nanoarchitecture is constructed for the first time,highly integrating the advantages of multiple components and structures to exhibit excellent electromagnetic response.Its electromagnetic properties and internal energy conversion can be flexibly regulated by tailoring microstructure with oxidative molecular layer deposition(oMLD),providing a new cognition to frequency-selective microwave absorption.The optimal reflection loss reaches≈−58 dB,and the absorption frequency can be shifted from high frequency to low frequency by increasing the number of oMLD cycles.Meanwhile,a novel electromagnetic absorption surface is designed to enable ultra-wideband absorption,covering almost the entire K and Ka bands.More importantly,an ingenious self-powered device is constructed using the eco-mimetic nanoarchitecture,which can convert electromagnetic radiation into electric energy for recycling.This work offers a new insight into electromagnetic protection and waste energy recycling,presenting a broad application prospect in radar stealth,information communication,aerospace engineering,etc.
基金the Beijing Nova Program(20230484431)Opening Project of State Silica-Based Materials Laboratory of Anhui Province(2022KF12)is gratefully acknowledged.
文摘With the continuous advancement of communication technology,the escalating demand for electromagnetic shielding interference(EMI)materials with multifunctional and wideband EMI performance has become urgent.Controlling the electrical and magnetic components and designing the EMI material structure have attracted extensive interest,but remain a huge challenge.Herein,we reported the alternating electromagnetic structure composite films composed of hollow metal-organic frameworks/layered MXene/nanocellulose(HMN)by alternating vacuum-assisted filtration process.The HMN composite films exhibit excellent EMI shielding effectiveness performance in the GHz frequency(66.8 dB at Kaband)and THz frequency(114.6 dB at 0.1-4.0 THz).Besides,the HMN composite films also exhibit a high reflection loss of 39.7 dB at 0.7 THz with an effective absorption bandwidth up to 2.1 THz.Moreover,HMN composite films show remarkable photothermal conversion performance,which can reach 104.6℃under 2.0 Sun and 235.4℃under 0.8 W cm^(−2),respectively.The unique micro-and macrostructural design structures will absorb more incident electromagnetic waves via interfacial polarization/multiple scattering and produce more heat energy via the local surface plasmon resonance effect.These features make the HMN composite film a promising candidate for advanced EMI devices for future 6G communication and the protection of electronic equipment in cold environments.
基金support for this work by the National Key Research and Development Program of China(No.2019YFA0706802)the National Natural Science Foundation of China(Nos.51903223 and 12072325)the National Natural Science Foundation of China of Henan Province(No.222300420541).
文摘The strategy of incorporating polymers into MXene-based functional materials has been widely used to improve their mechanical properties,however with inevitable sacrifice of their electrical conductivity and electromagnetic interference(EMI)shielding performance.This study demonstrates a facile yet efficient layering structure design to prepare the highly robust and conductive double-layer Janus films comprised of independent aramid nanofiber(ANF)and Ti3C2Tx MXene/poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate)(PEDOT:PSS)layers.The ANF layer serves to provide good mechanical stability,whilst the MXene/PEDOT:PSS layer ensures excellent electrical conductivity.Doping PEDOT:PSS into the MXene layer enhances the interfacial bonding strength between the MXene and ANF layers and improves the hydrophobicity and water/oxidation resistance of MXene layer.The resultant ANF/MXene-PEDOT:PSS Janus film with a conductive layer thickness of 4.4μm was shown to display low sheet resistance(2.18Ω/sq),good EMI shielding effectiveness(EMI SE of 48.1 dB),high mechanical strength(155.9 MPa),and overall toughness(19.4 MJ/m^(3)).Moreover,the excellent electrical conductivity and light absorption capacity of the MXene-PEDOT:PSS conductive layer mean that these Janus films display multi-source driven heating functions,producing excellent Joule heating(382℃ at 4 V)and photothermal conversion(59.6℃ at 100 mW/m^(2))properties.
基金This work was supported by National Key Research and Development Project(2020YFB1600102,2020YFA0714302)National Natural Science Foundation of China(51878164,51922030,52208430)+2 种基金Fundamental Research Funds for the Central Universities of China(2242022R10059)Natural Science Foundation of Jiangsu Province(SBK2021042206)Southeast University“Zhongying Young Scholars”Project,and Shuangchuang Program of Jiangsu Province(JSSCBS20210058).
文摘In the induction heating of airport pavement to remove snow and ice,soft magnetic geopolymer composite(SMGC)can be used to gather the dissipated electromagnetic energy,thus enhancing the energy utilization efficiency.The aim of this work is to analyze the influence mechanism of iron powder content on the electromagnetic and mechanical performance of SMGC,so as to provide theoretical guidance for the design of soft magnetic layer within airport pavement structure.The results show that the increase of iron powder content reduces the resistance and magnetoresistance of SMGC by decreasing the content of non-magnetic phases between iron powder.However,the reduction of iron powder spacing also provides a shorter transmission path for the inter-particle eddy currents in the SMGC specimen,which enhances the exchange coupling between iron powder,thus increasing the electromagnetic loss.Therefore,the compatibility between magnetic permeability and electromagnetic loss should be considered comprehensively in the mix design of SMGC.In addition,although iron powder can enhance the mechanical properties of SMGC by improving the density of geopolymer matrix,the excessive amount of iron powder can lead to a weak interfacial transition zone between geopolymer matrix and iron powder.According to the induction heating results,optimized SMGC can improve the energy transfer efficiency of induction heating by 24.03%.