In this paper, coupling the quasi-3D numerical simulation of electromagnetic field and the experiments of continuous casting with soft-contacted mould with some metals such as tin, aluminum, copper and steel, the elec...In this paper, coupling the quasi-3D numerical simulation of electromagnetic field and the experiments of continuous casting with soft-contacted mould with some metals such as tin, aluminum, copper and steel, the electromagnetic characteristics of continuous casting with soft-contacted mould is analyzed. It is shown that the electromagnetic pressure on the surface of billet is increasing with the rising of power frequency as a logarithmically parabolic function, with that of electric conductivity of billet as a power junction, and with that of the current in inductor as a parabolic junction.展开更多
Coupling the quasi 3D numerical simulation of the electromagnetic field and the experiments with some metals, a series of phenomena in the processes of continuous casting with soft contacted mould was analyzed. Some t...Coupling the quasi 3D numerical simulation of the electromagnetic field and the experiments with some metals, a series of phenomena in the processes of continuous casting with soft contacted mould was analyzed. Some theoretical and experimental models were presented, from which following results were obtained. 1) The electromagnetic force is related with electric conductivity of billet as a power function to 0.4. 2) The heat transfer between billet and mould is related with the contacting pressure, and it is a linear function for tin billet approximately. 3) The distance between initial solidification point and meniscus in billet is related with the surface magnetic flux density as a fourth root function. 4) The temperature gradient in the initial solidifying shell is reduced, which can decrease the tendency of hot tearing on the surface of billet, and increase the equiaxed crystal zone in billet. 5) The stronger the magnetic flux density is, the more shallow and the thinner the oscillation mark on the surface of billet is. 6) The depth of oscillation mark on the billet cast by the soft contacted mould can be reduced to about 10% in comparison with that on the billets cast by traditional mould. 7) In non dimensional condition, the average depth of the oscillation marks on the billets cast by the soft contacted mould decreases with increasing magnetic flux density on there as a complementary error function. [展开更多
文摘In this paper, coupling the quasi-3D numerical simulation of electromagnetic field and the experiments of continuous casting with soft-contacted mould with some metals such as tin, aluminum, copper and steel, the electromagnetic characteristics of continuous casting with soft-contacted mould is analyzed. It is shown that the electromagnetic pressure on the surface of billet is increasing with the rising of power frequency as a logarithmically parabolic function, with that of electric conductivity of billet as a power junction, and with that of the current in inductor as a parabolic junction.
文摘Coupling the quasi 3D numerical simulation of the electromagnetic field and the experiments with some metals, a series of phenomena in the processes of continuous casting with soft contacted mould was analyzed. Some theoretical and experimental models were presented, from which following results were obtained. 1) The electromagnetic force is related with electric conductivity of billet as a power function to 0.4. 2) The heat transfer between billet and mould is related with the contacting pressure, and it is a linear function for tin billet approximately. 3) The distance between initial solidification point and meniscus in billet is related with the surface magnetic flux density as a fourth root function. 4) The temperature gradient in the initial solidifying shell is reduced, which can decrease the tendency of hot tearing on the surface of billet, and increase the equiaxed crystal zone in billet. 5) The stronger the magnetic flux density is, the more shallow and the thinner the oscillation mark on the surface of billet is. 6) The depth of oscillation mark on the billet cast by the soft contacted mould can be reduced to about 10% in comparison with that on the billets cast by traditional mould. 7) In non dimensional condition, the average depth of the oscillation marks on the billets cast by the soft contacted mould decreases with increasing magnetic flux density on there as a complementary error function. [