Power-to-Gas(P2G)plays an important role in enhancing large-scale renewable energy integration in power systems.As an emerging inter-disciplinary subject,P2G technology requires knowledge in electrochemistry,electrica...Power-to-Gas(P2G)plays an important role in enhancing large-scale renewable energy integration in power systems.As an emerging inter-disciplinary subject,P2G technology requires knowledge in electrochemistry,electrical engineering,thermodynamic engineering,chemical engineering and system engineering.Aiming at P2G modeling and operational problems concerning the research field of power systems and the energy internet,this paper briefly reviews the main technologies and application potentials of the P2G system,and makes systematic summaries of major progresses related to P2G’s integration into the power grid in a bottom-top manner,including the modeling of high/room-temperature electrolysis cells,steady-state/dynamic optimization control of the P2G system,P2G’s integrated model and operational strategies at the grid level.In the final part of this paper,suggestions are put forward on future research directions of P2G systems from the aspects of modeling and operational optimization.展开更多
为考察电流密度对氯碱工业中离子膜电解槽内流体传递特性的影响,利用流体力学计算软件,对不同电流密度下电解槽阳极室进行了数值模拟,得到了阳极室单个格栅内流体的速度、温度和浓度分布。以液体循环量、膜附近处速度的最大值、膜表面...为考察电流密度对氯碱工业中离子膜电解槽内流体传递特性的影响,利用流体力学计算软件,对不同电流密度下电解槽阳极室进行了数值模拟,得到了阳极室单个格栅内流体的速度、温度和浓度分布。以液体循环量、膜附近处速度的最大值、膜表面温度和浓度为指标,考察了不同电流密度下电解槽的运行情况。结果表明:随着电流密度的增加,电解槽内液体循环量增大,膜表面温度升高,盐水浓度降低;在电流密度为4.5 k A·m-2的典型工况下,电解槽内平均温度为86.39℃,膜表面平均温度为87.40℃;当电流密度提高时,可以通过降低进口溶液温度,获得与典型工况相近的电解槽内平均温度和膜表面平均温度。展开更多
Solid oxide electrolysis cells(SOECs)can convert electricity to chemicals with high efficiency at ~600-900℃,and have attracted widespread attention in renewable energy conversion and storage.SOECs operate in the inve...Solid oxide electrolysis cells(SOECs)can convert electricity to chemicals with high efficiency at ~600-900℃,and have attracted widespread attention in renewable energy conversion and storage.SOECs operate in the inverse mode of solid oxide fuel cells(SOFCs)and therefore inherit most of the advantages of SOFC materials and energy conversion processes.However,the external bias that drives the electrochemical process will strongly change the chemical environments in both in the cathode and anode,therefore necessitating careful reconsideration of key materials and electrocatalysis processes.More importantly,SOECs provide a unique advantage of electrothermal catalysis,especially in converting stable low-carbon alkanes such as methane to ethylene with high selectivity.Here,we review the state-of-the-art of SOEC research progress in electrothermal catalysis and key materials and provide a future perspective.展开更多
Due to their unique electronic and structural properties triggered by high atomic utilization and easy surface modification,two-dimensional(2D)materials have prodigious potential in electrocatalysis for energy convers...Due to their unique electronic and structural properties triggered by high atomic utilization and easy surface modification,two-dimensional(2D)materials have prodigious potential in electrocatalysis for energy conversion technology in recent years.In this review,we discuss the recent progress on two-dimensional nanomaterials for electrocatalysis.Five categories including metals,transition metal compounds,non-metal,metal-organic framework and other emerging 2D nanomaterials are successively introduced.Finally,the challenges and future development directions of 2D materials for electrocatalysis are also prospected.We hope this review may be helpful for guiding the design and application of 2D nanomaterials in energy conversion technologies.展开更多
Green hydrogen produced by water electrolysis combined with renewable energy is a promising alternative to fossil fuels due to its high energy density with zero-carbon emissions.Among water electrolysis technologies,t...Green hydrogen produced by water electrolysis combined with renewable energy is a promising alternative to fossil fuels due to its high energy density with zero-carbon emissions.Among water electrolysis technologies,the anion exchange membrane(AEM) water electrolysis has gained intensive attention and is considered as the next-generation emerging technology due to its potential advantages,such as the use of low-cost non-noble metal catalysts,the relatively mature stack assembly process,etc.However,the AEM water electrolyzer is still in the early development stage of the kW-level stack,which is mainly attributed to severe performance decay caused by the core component,i.e.,AEM.Here,the review comprehensively presents the recent progress of advanced AEM from the view of the performance of water electrolysis cells.Herein,fundamental principles and critical components of AEM water electrolyzers are introduced,and work conditions of AEM water electrolyzers and AEM performance improvement strategies are discussed.The challenges and perspectives are also analyzed.展开更多
基金This work was supported by the Key Program for International S&T Cooperation Projects of China(2016YFE0102600)National Natural Science Foundation of China(51577096,51761135015)National Key Research and Development Program of China(2018YFB0905200).
文摘Power-to-Gas(P2G)plays an important role in enhancing large-scale renewable energy integration in power systems.As an emerging inter-disciplinary subject,P2G technology requires knowledge in electrochemistry,electrical engineering,thermodynamic engineering,chemical engineering and system engineering.Aiming at P2G modeling and operational problems concerning the research field of power systems and the energy internet,this paper briefly reviews the main technologies and application potentials of the P2G system,and makes systematic summaries of major progresses related to P2G’s integration into the power grid in a bottom-top manner,including the modeling of high/room-temperature electrolysis cells,steady-state/dynamic optimization control of the P2G system,P2G’s integrated model and operational strategies at the grid level.In the final part of this paper,suggestions are put forward on future research directions of P2G systems from the aspects of modeling and operational optimization.
文摘为考察电流密度对氯碱工业中离子膜电解槽内流体传递特性的影响,利用流体力学计算软件,对不同电流密度下电解槽阳极室进行了数值模拟,得到了阳极室单个格栅内流体的速度、温度和浓度分布。以液体循环量、膜附近处速度的最大值、膜表面温度和浓度为指标,考察了不同电流密度下电解槽的运行情况。结果表明:随着电流密度的增加,电解槽内液体循环量增大,膜表面温度升高,盐水浓度降低;在电流密度为4.5 k A·m-2的典型工况下,电解槽内平均温度为86.39℃,膜表面平均温度为87.40℃;当电流密度提高时,可以通过降低进口溶液温度,获得与典型工况相近的电解槽内平均温度和膜表面平均温度。
基金the National Key Research and Development Program of China(2017YFA0700102)Natural Science Foundation of China(91845202)+3 种基金Dalian National Laboratory for Clean Energy(DNL180404)Strategic Priority Research Program of Chinese Academy of Sciences(XDB2000000)Natural Science Foundation of Fujian Province(2018J01088)State Key Laboratory of Structural Chemistry(20170011,20200012)。
文摘Solid oxide electrolysis cells(SOECs)can convert electricity to chemicals with high efficiency at ~600-900℃,and have attracted widespread attention in renewable energy conversion and storage.SOECs operate in the inverse mode of solid oxide fuel cells(SOFCs)and therefore inherit most of the advantages of SOFC materials and energy conversion processes.However,the external bias that drives the electrochemical process will strongly change the chemical environments in both in the cathode and anode,therefore necessitating careful reconsideration of key materials and electrocatalysis processes.More importantly,SOECs provide a unique advantage of electrothermal catalysis,especially in converting stable low-carbon alkanes such as methane to ethylene with high selectivity.Here,we review the state-of-the-art of SOEC research progress in electrothermal catalysis and key materials and provide a future perspective.
基金Supported by the Fundamental Research Funds for the Central Universities of China(No.2018KFYXKJC044)the National 1000 Young Talents Program of China.
文摘Due to their unique electronic and structural properties triggered by high atomic utilization and easy surface modification,two-dimensional(2D)materials have prodigious potential in electrocatalysis for energy conversion technology in recent years.In this review,we discuss the recent progress on two-dimensional nanomaterials for electrocatalysis.Five categories including metals,transition metal compounds,non-metal,metal-organic framework and other emerging 2D nanomaterials are successively introduced.Finally,the challenges and future development directions of 2D materials for electrocatalysis are also prospected.We hope this review may be helpful for guiding the design and application of 2D nanomaterials in energy conversion technologies.
基金supported by the National Key Research and Development Program(2022YFB4202200)the Fundamental Research Funds for the Central Universities and sponsored by Shanghai Pujiang Program(22PJ1413100)。
文摘Green hydrogen produced by water electrolysis combined with renewable energy is a promising alternative to fossil fuels due to its high energy density with zero-carbon emissions.Among water electrolysis technologies,the anion exchange membrane(AEM) water electrolysis has gained intensive attention and is considered as the next-generation emerging technology due to its potential advantages,such as the use of low-cost non-noble metal catalysts,the relatively mature stack assembly process,etc.However,the AEM water electrolyzer is still in the early development stage of the kW-level stack,which is mainly attributed to severe performance decay caused by the core component,i.e.,AEM.Here,the review comprehensively presents the recent progress of advanced AEM from the view of the performance of water electrolysis cells.Herein,fundamental principles and critical components of AEM water electrolyzers are introduced,and work conditions of AEM water electrolyzers and AEM performance improvement strategies are discussed.The challenges and perspectives are also analyzed.