The surface microstructure and the surface segregation of FGH 95 nickel-basedsuperalloy powders prepared through plasma rotating electrode processing (PREP) have beeninvestigated by using SEM and AES. The results indi...The surface microstructure and the surface segregation of FGH 95 nickel-basedsuperalloy powders prepared through plasma rotating electrode processing (PREP) have beeninvestigated by using SEM and AES. The results indicate that the surface microstructure of powderschanges from dendrite into cellular stricture as the particle size of powders decrease, and thepredominant precipitates solidified on the particle surfaces were identified as MC' type carbidesenriched with Nb and Ti. It was also indicated that along with the depth of particle surfaces, thesegregation layer of S, C and O elements are thick, and that of Ti, Cr elements are thin for largesire powders while they are in reverse for median size particles.展开更多
This article delivers a robust overview of potential electrode materials for use in symmetrical solid oxide fuel cells(S-SOFCs),a relatively new SOFC technology.To this end,this article provides a comprehensive review...This article delivers a robust overview of potential electrode materials for use in symmetrical solid oxide fuel cells(S-SOFCs),a relatively new SOFC technology.To this end,this article provides a comprehensive review of recent advances and progress in electrode materials for S-SOFC,discussing both the selection of materials and the challenges that come with making that choice.This article discussed the relevant factors involved in developing electrodes with nano/microstructure.Nanocomposites,e.g.,non-cobalt and lithiated materials,are only a few of the electrode types now being researched.Furthermore,the phase structure and microstructure of the produced materials are heavily influenced by the synthesis procedure.Insights into the possibilities and difficulties of the material are discussed.To achieve the desired microstructural features,this article focuses on a synthesis technique that is either the most recent or a better iteration of an existing process.The portion of this analysis that addresses the risks associated with manufacturing and the challenges posed by materials when fabricating S-SOFCs is the most critical.This article also provides important and useful recommendations for the strategic design of electrode materials researchers.展开更多
In present work the weldings of an austenitic stainless steel (AISI 304L) and a ferritic carbon steel (St37) were conducted by tungsten inert gas (TIG) welding process using four different austenitic filler meta...In present work the weldings of an austenitic stainless steel (AISI 304L) and a ferritic carbon steel (St37) were conducted by tungsten inert gas (TIG) welding process using four different austenitic filler metals, namely ER308L, ER309L, ER316L and ER310. Microstructure characteristics and mechanical properties of the weldments were studied using optical and scanning electron microscopy, ferrit-ometry, hardness, tensile and impact tests. The ferrite number (_N-~) of the weldments made by different electrodes varies between 0.5 and 9.5. It was found that the increase in amount of delta ferrite in the microstructure of the weld metals, causes the decrease of the impact toughness of the weldments. It seems that using ER309L and ER316L electrodes can provide a good combination between the mechanical and metallurgical properties of the joint in AISI 304L/St37 dissimilar welding.展开更多
基金This work is financially supported by The National Defence Committee of ChineseTechnology(No.95-YJ-20)
文摘The surface microstructure and the surface segregation of FGH 95 nickel-basedsuperalloy powders prepared through plasma rotating electrode processing (PREP) have beeninvestigated by using SEM and AES. The results indicate that the surface microstructure of powderschanges from dendrite into cellular stricture as the particle size of powders decrease, and thepredominant precipitates solidified on the particle surfaces were identified as MC' type carbidesenriched with Nb and Ti. It was also indicated that along with the depth of particle surfaces, thesegregation layer of S, C and O elements are thick, and that of Ti, Cr elements are thin for largesire powders while they are in reverse for median size particles.
基金the Fundamental Research Grant Scheme (FRGS),grant No.FRGS/1/2021/TK0/UKM/01/5 funded by the Ministry of Higher Education (MOHE)。
文摘This article delivers a robust overview of potential electrode materials for use in symmetrical solid oxide fuel cells(S-SOFCs),a relatively new SOFC technology.To this end,this article provides a comprehensive review of recent advances and progress in electrode materials for S-SOFC,discussing both the selection of materials and the challenges that come with making that choice.This article discussed the relevant factors involved in developing electrodes with nano/microstructure.Nanocomposites,e.g.,non-cobalt and lithiated materials,are only a few of the electrode types now being researched.Furthermore,the phase structure and microstructure of the produced materials are heavily influenced by the synthesis procedure.Insights into the possibilities and difficulties of the material are discussed.To achieve the desired microstructural features,this article focuses on a synthesis technique that is either the most recent or a better iteration of an existing process.The portion of this analysis that addresses the risks associated with manufacturing and the challenges posed by materials when fabricating S-SOFCs is the most critical.This article also provides important and useful recommendations for the strategic design of electrode materials researchers.
文摘In present work the weldings of an austenitic stainless steel (AISI 304L) and a ferritic carbon steel (St37) were conducted by tungsten inert gas (TIG) welding process using four different austenitic filler metals, namely ER308L, ER309L, ER316L and ER310. Microstructure characteristics and mechanical properties of the weldments were studied using optical and scanning electron microscopy, ferrit-ometry, hardness, tensile and impact tests. The ferrite number (_N-~) of the weldments made by different electrodes varies between 0.5 and 9.5. It was found that the increase in amount of delta ferrite in the microstructure of the weld metals, causes the decrease of the impact toughness of the weldments. It seems that using ER309L and ER316L electrodes can provide a good combination between the mechanical and metallurgical properties of the joint in AISI 304L/St37 dissimilar welding.