采用CeO2-TiO2复合物薄膜作为聚苯胺电致变色器件的对电极,选用聚合物固态电解质(PE:PMMA-PC-EC-L iC lO4),构筑了新型双层结构(Dual-type)聚苯胺(PANI)固态电致变色(EC)器件.用电化学现场紫外-可见光谱法表征了该EC器件(ITO|PANI||PE||...采用CeO2-TiO2复合物薄膜作为聚苯胺电致变色器件的对电极,选用聚合物固态电解质(PE:PMMA-PC-EC-L iC lO4),构筑了新型双层结构(Dual-type)聚苯胺(PANI)固态电致变色(EC)器件.用电化学现场紫外-可见光谱法表征了该EC器件(ITO|PANI||PE||CeO2-TiO2|ITO)的电致变色性能,并与单层结构(S ingle-type)EC器件(ITO|PANI||PE||ITO)进行了比较.研究结果表明,双层结构EC器件比单层结构EC器件的电致变色性能好,如响应速度快,循环寿命长.同时,考察了电解质组分对聚苯胺电致变色稳定性的影响.EC器件(ITO|PANI||PE||CeO2-TiO2|ITO)的颜色呈现由透明的黄色(-1.5 V,PANIvs.CeO2-TiO2)到蓝色(1.0 V)的可逆变化,在700 nm处的透射率由42.19%变到13.35%,经过150个循环,其透射率差仍保持不变,着色效率为152.1 cm2/C.展开更多
In this study,novel electrochromic copolymers of 3,4-ethylenedioxythiophene(EDOT)and(E)-1,2-bis(2-fluoro-4-(4-hexylthiophen-2-yl)phenyl)diazene(M1)with different monomer feed ratios were designed and synthesized elect...In this study,novel electrochromic copolymers of 3,4-ethylenedioxythiophene(EDOT)and(E)-1,2-bis(2-fluoro-4-(4-hexylthiophen-2-yl)phenyl)diazene(M1)with different monomer feed ratios were designed and synthesized electrochemically.Electrochemical and spectroelectrochemical characterizations were performed using voltammetry and UV-Vis-NIR spectrophotometry techniques to test the applicability of copolymers for electrochromic applications.In terms of electrochemical behaviors,addition of an electron-rich EDOT unit into the azobenzenecontaining copolymer increased the electron density on the polymer chain and afforded copolymers with very low oxidation potentials at around0.30 V.While the homopolymers(P1 and PEDOT)exhibited neutral state absorptions centered at 510 and 583 nm,EDOT-bearing copolymers showed red shifted absorptions compared to those of P1 with narrower optical band gaps.In addition,the poor optical contrast and switching times of azobenzene-bearing homopolymer were significantly improved with EDOT addition into the copolymer chain.As a result of the promising electrochromic and kinetic preperties,Co P1.5-bearing single layer electrochromic device that works between purple and light greenish blue colors was constructed and characterized.展开更多
文摘In this study,novel electrochromic copolymers of 3,4-ethylenedioxythiophene(EDOT)and(E)-1,2-bis(2-fluoro-4-(4-hexylthiophen-2-yl)phenyl)diazene(M1)with different monomer feed ratios were designed and synthesized electrochemically.Electrochemical and spectroelectrochemical characterizations were performed using voltammetry and UV-Vis-NIR spectrophotometry techniques to test the applicability of copolymers for electrochromic applications.In terms of electrochemical behaviors,addition of an electron-rich EDOT unit into the azobenzenecontaining copolymer increased the electron density on the polymer chain and afforded copolymers with very low oxidation potentials at around0.30 V.While the homopolymers(P1 and PEDOT)exhibited neutral state absorptions centered at 510 and 583 nm,EDOT-bearing copolymers showed red shifted absorptions compared to those of P1 with narrower optical band gaps.In addition,the poor optical contrast and switching times of azobenzene-bearing homopolymer were significantly improved with EDOT addition into the copolymer chain.As a result of the promising electrochromic and kinetic preperties,Co P1.5-bearing single layer electrochromic device that works between purple and light greenish blue colors was constructed and characterized.