Due to their unique electronic and structural properties triggered by high atomic utilization and easy surface modification,two-dimensional(2D)materials have prodigious potential in electrocatalysis for energy convers...Due to their unique electronic and structural properties triggered by high atomic utilization and easy surface modification,two-dimensional(2D)materials have prodigious potential in electrocatalysis for energy conversion technology in recent years.In this review,we discuss the recent progress on two-dimensional nanomaterials for electrocatalysis.Five categories including metals,transition metal compounds,non-metal,metal-organic framework and other emerging 2D nanomaterials are successively introduced.Finally,the challenges and future development directions of 2D materials for electrocatalysis are also prospected.We hope this review may be helpful for guiding the design and application of 2D nanomaterials in energy conversion technologies.展开更多
One of the critical issues in the development of novel metallic biomaterials is the design and fabrication of metallic scaffolds and implants with hierarchical structures mimicking human bones. In this work, selective...One of the critical issues in the development of novel metallic biomaterials is the design and fabrication of metallic scaffolds and implants with hierarchical structures mimicking human bones. In this work, selective laser melting(SLM) and electrochemical anodization were applied to fabricate dense Ti-6 A1-4 V components with macro-micron-nanoscale hierarchical surfaces. Scanning electron microscopy(SEM), 3 D laser scanning microscopy(3 D LSM), contact angle video system, fluorescence microscopy and spectrophotometer were used to investigate the properties of the samples. The results reveal that the SLMed post-anodization(SLM-TNT) exhibits enhanced or at least comparable wettability, protein adsorption and biological response of mesenchymal stem cells(MSCs) in comparison with the three reference configurations, i.e., the polished Ti-6 Al-4 V(PO-Ti64), the SLMed Ti-6 A1-4 V(SLM-Ti64) and the polished Ti-6 A1-4 V post-anodization(PO-TNT). The improved cytocompatibility of the samples after SLM and anodization should be mainly attributed to the nanoscale tubular features,while the macro-micron-scale structures only lead to slight preference for cell attachment.展开更多
The Ti−45Nb(wt.%)alloy properties were investigated in relation to its potential biomedical use.Laser surface modification was utilized to improve its performance in biological systems.As a result of the laser treatme...The Ti−45Nb(wt.%)alloy properties were investigated in relation to its potential biomedical use.Laser surface modification was utilized to improve its performance in biological systems.As a result of the laser treatment,(Ti,Nb)O scale was formed and various morphological features appeared on the alloy surface.The electrochemical behavior of Ti−45Nb alloy in simulated body conditions was evaluated and showed that the alloy was highly resistant to corrosion deterioration regardless of additional laser surface modification treatment.Nevertheless,the improved corrosion resistance after laser treatment was evident(the corrosion current density of the alloy before laser irradiation was 2.84×10^(−8)A/cm2,while that after laser treatment with 5 mJ was 0.65×10^(−8)A/cm2)and ascribed to the rapid formation of a complex and passivating bi-modal surface oxide layer.Alloy cytotoxicity and effects of the Ti−45Nb alloy laser surface modification on the MRC-5 cell viability,morphology,and proliferation were also investigated.The Ti−45Nb alloy showed no cytotoxic effect.Moreover,cells showed improved viability and adherence to the alloy surface after the laser irradiation treatment.The highest average cell viability of 115.37%was attained for the alloy laser-irradiated with 15 mJ.Results showed that the laser surface modification can be successfully utilized to significantly improve alloy performance in a biological environment.展开更多
A sequential anode-cathode double-chamber microbial fuel cell (MFC), in which the effluent of anode chamber was used as a continuous feed for an aerated cathode chamber, was constructed in this experiment to investi...A sequential anode-cathode double-chamber microbial fuel cell (MFC), in which the effluent of anode chamber was used as a continuous feed for an aerated cathode chamber, was constructed in this experiment to investigate the performance of brewery wastewater treatment in conjugation with electricity generation. Carbon fiber was used as anode and plain carbon felt with biofilm as cathode. When hydraulic retention time (HRT) was 14.7 h, a relatively high chemical oxygen demand (COD) removal efficiency of 91.7%-95.7% was achieved under long-term stable operation. The MFC displayed an open circuit voltage of 0.434 V and a maximum power density of 830 mW/m^3 at an external resistance of 300 0. To estimate the electrochemical performance of the MFC, electrochemical measurements were carried out and showed that polarization resistance of anode was the major limiting factor in the MFC. Since a high COD removal efficiency was achieved, we conclude that the sequential anode-cathode MFC constructed with bio-cathode in this experiment could provide a new approach for brewery wastewater treatment.展开更多
基金Supported by the Fundamental Research Funds for the Central Universities of China(No.2018KFYXKJC044)the National 1000 Young Talents Program of China.
文摘Due to their unique electronic and structural properties triggered by high atomic utilization and easy surface modification,two-dimensional(2D)materials have prodigious potential in electrocatalysis for energy conversion technology in recent years.In this review,we discuss the recent progress on two-dimensional nanomaterials for electrocatalysis.Five categories including metals,transition metal compounds,non-metal,metal-organic framework and other emerging 2D nanomaterials are successively introduced.Finally,the challenges and future development directions of 2D materials for electrocatalysis are also prospected.We hope this review may be helpful for guiding the design and application of 2D nanomaterials in energy conversion technologies.
基金financially supported by the National Natural Science Foundation of China (No. 51604104)Shenzhen Science and Technology Innovation Commission (No. ZDSYS201703031748354)the National Science Foundation of Guangdong Province (No. 2016A030313756)
文摘One of the critical issues in the development of novel metallic biomaterials is the design and fabrication of metallic scaffolds and implants with hierarchical structures mimicking human bones. In this work, selective laser melting(SLM) and electrochemical anodization were applied to fabricate dense Ti-6 A1-4 V components with macro-micron-nanoscale hierarchical surfaces. Scanning electron microscopy(SEM), 3 D laser scanning microscopy(3 D LSM), contact angle video system, fluorescence microscopy and spectrophotometer were used to investigate the properties of the samples. The results reveal that the SLMed post-anodization(SLM-TNT) exhibits enhanced or at least comparable wettability, protein adsorption and biological response of mesenchymal stem cells(MSCs) in comparison with the three reference configurations, i.e., the polished Ti-6 Al-4 V(PO-Ti64), the SLMed Ti-6 A1-4 V(SLM-Ti64) and the polished Ti-6 A1-4 V post-anodization(PO-TNT). The improved cytocompatibility of the samples after SLM and anodization should be mainly attributed to the nanoscale tubular features,while the macro-micron-scale structures only lead to slight preference for cell attachment.
基金the Ministry of Science,Technological Development and Innovation of the Republic of Serbia(No.451-03-47/2023-01/200017)the PhD fellowship of Slađana LAKETIĆ.Authors would also like to acknowledge the help of Dr.Anton HOHENWARTER from the Department of Materials Science,Montanuniversitat Leoben,Austria,during the Ti−45Nb alloy microstructural analysis.
文摘The Ti−45Nb(wt.%)alloy properties were investigated in relation to its potential biomedical use.Laser surface modification was utilized to improve its performance in biological systems.As a result of the laser treatment,(Ti,Nb)O scale was formed and various morphological features appeared on the alloy surface.The electrochemical behavior of Ti−45Nb alloy in simulated body conditions was evaluated and showed that the alloy was highly resistant to corrosion deterioration regardless of additional laser surface modification treatment.Nevertheless,the improved corrosion resistance after laser treatment was evident(the corrosion current density of the alloy before laser irradiation was 2.84×10^(−8)A/cm2,while that after laser treatment with 5 mJ was 0.65×10^(−8)A/cm2)and ascribed to the rapid formation of a complex and passivating bi-modal surface oxide layer.Alloy cytotoxicity and effects of the Ti−45Nb alloy laser surface modification on the MRC-5 cell viability,morphology,and proliferation were also investigated.The Ti−45Nb alloy showed no cytotoxic effect.Moreover,cells showed improved viability and adherence to the alloy surface after the laser irradiation treatment.The highest average cell viability of 115.37%was attained for the alloy laser-irradiated with 15 mJ.Results showed that the laser surface modification can be successfully utilized to significantly improve alloy performance in a biological environment.
基金Project supported by the Heilongjiang Science and Technology Key Projects (No. GC07A305)the Fund of Harbin Engineering University (No. HEUFT08008)the Daqing Science and Technology Key Projects (No. SGG2008-029), Heilongjiang, China
文摘A sequential anode-cathode double-chamber microbial fuel cell (MFC), in which the effluent of anode chamber was used as a continuous feed for an aerated cathode chamber, was constructed in this experiment to investigate the performance of brewery wastewater treatment in conjugation with electricity generation. Carbon fiber was used as anode and plain carbon felt with biofilm as cathode. When hydraulic retention time (HRT) was 14.7 h, a relatively high chemical oxygen demand (COD) removal efficiency of 91.7%-95.7% was achieved under long-term stable operation. The MFC displayed an open circuit voltage of 0.434 V and a maximum power density of 830 mW/m^3 at an external resistance of 300 0. To estimate the electrochemical performance of the MFC, electrochemical measurements were carried out and showed that polarization resistance of anode was the major limiting factor in the MFC. Since a high COD removal efficiency was achieved, we conclude that the sequential anode-cathode MFC constructed with bio-cathode in this experiment could provide a new approach for brewery wastewater treatment.