Lithium-ion batteries (LIB) have received substantial attention in the last 10 years,as they offer great promise as power sources that can lead to the electric vehicle (EV) revolution in the next 5 years.Since the cat...Lithium-ion batteries (LIB) have received substantial attention in the last 10 years,as they offer great promise as power sources that can lead to the electric vehicle (EV) revolution in the next 5 years.Since the cathode serves as a key component in LIB,its properties significantly affect the performance of the whole system.Recently,the cathode surface modification based on coating technique has been widely employed to enhance the electrochemical performances by improving the material conductivity,stabilising the physical structure of materials,as well as preventing the reactions between the electrode and electrolyte.In this work,we reviewed the present of a number of promising cathode materials for Li-ion batteries.After that,we summarized the very recent research progress focusing on the surface coating strategies,mainly including the coating materials,the coating technologies,as well as the corresponding working mechanisms for cathodes.At last,the challenges faced and future guidelines for optimizing cathode materials are discussed.In this study,we propose that the structure of cathode is a crucial factor during the selection of coating materials and technologies.展开更多
Lithium-ion batteries(LIBs) have been widely used in many fields such as portable electronics and electric vehicles since their successful commercialization in the 1990 s. However, the electrochemical performance of c...Lithium-ion batteries(LIBs) have been widely used in many fields such as portable electronics and electric vehicles since their successful commercialization in the 1990 s. However, the electrochemical performance of current commercial LIBs still needs to be further improved to meet the continuously increasing demands for energy storage applications. Recently, tremendous research efforts have been made in developing next-generation LIBs with enhanced electrochemical performance. In this review, we mainly focus on the recent progress of LIBs with high electrochemical performance from four aspects, including cathode materials, anode materials, electrolyte, and separators. We discuss not only the commercial electrode materials(LiCoO_2,LiFePO_4, LiMn_2O_4, LiNi_xMn_yCo_zO_2, LiNi_xCo_yAl_zO_2, and graphite) but also other promising next-generation materials such as Li-, Mn-rich layered oxides, organic cathode materials, Si, and Li metal. For each type of materials, we highlight their problems and corresponding strategies to enhance their electrochemical performance. Nowadays, one of the key challenges to construct high-performance LIBs is how to develop cathode materials with high capacity and working voltage. This review provides an overview and future perspectives to develop next-generation LIBs with high electrochemical performance.展开更多
As a main difficult problem encountered in electrochemical machining (ECM), the cathode design is tackled, at present, with various numerical analysis methods such as finite difference, finite element and boundary e...As a main difficult problem encountered in electrochemical machining (ECM), the cathode design is tackled, at present, with various numerical analysis methods such as finite difference, finite element and boundary element methods. Among them, the finite element method presents more flexibility to deal with the irregularly shaped workpieces. However, it is very difficult to ensure the convergence of finite element numerical approach. This paper proposes an accurate model and a finite element numerical approach of cathode design based on the potential distribution in inter-electrode gap. In order to ensure the convergence of finite element numerical approach and increase the accuracy in cathode design, the cathode shape should be iterated to eliminate the design errors in computational process. Several experiments are conducted to verify the machining accuracy of the designed cathode. The experimental results have proven perfect convergence and good computing accuracy of the proposed finite element numerical approach by the high surface quality and dimensional accuracy of the machined blades.展开更多
The structure and characteristic of carbon materials have a direct influence on the electrochemical performance of sulfur-carbon composite electrode materials for lithium-sulfur battery. In this paper, sulfur composit...The structure and characteristic of carbon materials have a direct influence on the electrochemical performance of sulfur-carbon composite electrode materials for lithium-sulfur battery. In this paper, sulfur composite has been synthesized by heating a mixture of elemental sulfur and activated carbon, which is characterized as high specific surface area and microporous structure. The composite, contained 70% sulfur, as cathode in a lithium cell based on organic liquid electrolyte was tested at room temperature. It showed two reduction peaks at 2.05 V and 2.35 V, one oxidation peak at 2.4 V during cyclic voltammogram test. The initial discharge specific capacity was 1180.8 mAh g-1 and the utilization of electrochemically active sulfur was about 70.6% assuming a complete reaction to the product of Li2S. The specific capacity still kept as high as 720.4 mAh g^-1 after 60 cycles retaining 61% of the initial discharge capacity.展开更多
To meet the growing energy demands, it is urgent for us to construct grid-scale energy storage systemthan can connect sustainable energy resources. Aqueous Li-ion batteries (ALIBs) have been widely in-vestigated to ...To meet the growing energy demands, it is urgent for us to construct grid-scale energy storage systemthan can connect sustainable energy resources. Aqueous Li-ion batteries (ALIBs) have been widely in-vestigated to become the most promising stationary power sources for sustainable energy such as windand solar power. It is believed that advantages of ALIBs will overcome the limitations of the traditionalorganic lithium battery in virtue of the safety and environmentally friendly aqueous electrolyte. In thepast decades, plentiful works have been devoted to enhance the performance of different types of ALIBs.In this review, we discuss the development of cathode, anode and electrolyte for acquiring the desiredelectrochemical performance of ALIBs. Also. the main challenges and outlook in this field are briefly dis-cussed.展开更多
The development of nanotechnology in the past two decades has generated great capability of controlling materials at the nanometer scale and has enabled exciting opportunities to design materials with desirable electr...The development of nanotechnology in the past two decades has generated great capability of controlling materials at the nanometer scale and has enabled exciting opportunities to design materials with desirable electronic, ionic, photonic, and mechanical properties. This development has also contributed to tile advance in energy storage, which is a critical technology in this century. In this article, we will review how the rational design of nanostructured materials has addressed the challenges of batteries and electrochemical capacitors and led to high-performance electrochemical energy storage devices. Four specific material systems will be discussed: i) nanostructured alloy anodes for Li-batteries, ii) nanostructured sulfur cathodes for Li-batteries, iii) nanoporous open- framework battery electrodes, and iv) nanostructured electrodes for electrochemical capacitors.展开更多
A new P2-structured oxide Na0.8Ni0.4Mn0.6O2was synthesized using a solid reaction method in which Na2CO3, MnO2and NiO were used as starting materials.This oxide has a high amount of electrochemically active Ni and exh...A new P2-structured oxide Na0.8Ni0.4Mn0.6O2was synthesized using a solid reaction method in which Na2CO3, MnO2and NiO were used as starting materials.This oxide has a high amount of electrochemically active Ni and exhibits good electrochemical intercalation behavior of Na ions, including good rate capability and good cycle performance at both room temperature and elevated temperature. It displays two apparent voltage plateaus at about 3.6 and 3.3 V, and its discharge capacity reaches92 mAh·g-1at 0.1 C in the voltage range of 2.0-4.0 V. At1.0 C, its discharge capacity reaches 85.3 mAh·g-1. After80 cycles at different current rates, the as-prepared sample exhibits good capacity retention. At elevated temperature of 55 ℃, the discharge capacity remains the same at low current rate of 0.1 C, but at high current rate of 1.0 C, the discharge capacity is a little lower than that at room temperature.展开更多
The uniform layered LiNi1/3Co1/3Mn1/3O2 cathode material for lithium ion batteries was prepared by using (Ni1/3Co1/3Mn1/3)C2O4 as precursor synthesized via oxalate co-precipitation method in air. The effects of calc...The uniform layered LiNi1/3Co1/3Mn1/3O2 cathode material for lithium ion batteries was prepared by using (Ni1/3Co1/3Mn1/3)C2O4 as precursor synthesized via oxalate co-precipitation method in air. The effects of calcination temperature and time on the structure and electrochemical properties of the LiNi1/3Co1/3Mn1/3O2 were systemically studied. XRD results revealed that the optimal calcination conditions to prepare the layered LiNi1/3Co1/3Mn1/302 were 950℃ for 15 h. Electrochemical measurement showed that the sample prepared under the such conditions has the highest initial discharge capacity of 160.8 mAh/g and the smallest irreversible capacity loss of 13.5% as well as stable cycling performance at a constant current density of 30 mA/g between 2.5 and 4.3 V versus Li at room temperature.展开更多
Lithium element has attracted remarkable attraction for energy storage devices, over the past 30 years. Lithium is a light element and exhibits the low atomic number 3, just after hydrogen and helium in the periodic t...Lithium element has attracted remarkable attraction for energy storage devices, over the past 30 years. Lithium is a light element and exhibits the low atomic number 3, just after hydrogen and helium in the periodic table. The lithium atom has a strong tendency to release one electron and constitute a positive charge, as Li<sup> </sup>. Initially, lithium metal was employed as a negative electrode, which released electrons. However, it was observed that its structure changed after the repetition of charge-discharge cycles. To remedy this, the cathode mainly consisted of layer metal oxide and olive, e.g., cobalt oxide, LiFePO<sub>4</sub>, etc., along with some contents of lithium, while the anode was assembled by graphite and silicon, etc. Moreover, the electrolyte was prepared using the lithium salt in a suitable solvent to attain a greater concentration of lithium ions. Owing to the lithium ions’ role, the battery’s name was mentioned as a lithium-ion battery. Herein, the presented work describes the working and operational mechanism of the lithium-ion battery. Further, the lithium-ion batteries’ general view and future prospects have also been elaborated.展开更多
基金the financial support from Research Training Program(RTP)funded by the Department of Education,Australian Government。
文摘Lithium-ion batteries (LIB) have received substantial attention in the last 10 years,as they offer great promise as power sources that can lead to the electric vehicle (EV) revolution in the next 5 years.Since the cathode serves as a key component in LIB,its properties significantly affect the performance of the whole system.Recently,the cathode surface modification based on coating technique has been widely employed to enhance the electrochemical performances by improving the material conductivity,stabilising the physical structure of materials,as well as preventing the reactions between the electrode and electrolyte.In this work,we reviewed the present of a number of promising cathode materials for Li-ion batteries.After that,we summarized the very recent research progress focusing on the surface coating strategies,mainly including the coating materials,the coating technologies,as well as the corresponding working mechanisms for cathodes.At last,the challenges faced and future guidelines for optimizing cathode materials are discussed.In this study,we propose that the structure of cathode is a crucial factor during the selection of coating materials and technologies.
基金supported by the National Programs for Nano-Key Project(2017YFA0206700)the National Natural Science Foundation of China(21835004)111 Project from the Ministry of Education of China(B12015)
文摘Lithium-ion batteries(LIBs) have been widely used in many fields such as portable electronics and electric vehicles since their successful commercialization in the 1990 s. However, the electrochemical performance of current commercial LIBs still needs to be further improved to meet the continuously increasing demands for energy storage applications. Recently, tremendous research efforts have been made in developing next-generation LIBs with enhanced electrochemical performance. In this review, we mainly focus on the recent progress of LIBs with high electrochemical performance from four aspects, including cathode materials, anode materials, electrolyte, and separators. We discuss not only the commercial electrode materials(LiCoO_2,LiFePO_4, LiMn_2O_4, LiNi_xMn_yCo_zO_2, LiNi_xCo_yAl_zO_2, and graphite) but also other promising next-generation materials such as Li-, Mn-rich layered oxides, organic cathode materials, Si, and Li metal. For each type of materials, we highlight their problems and corresponding strategies to enhance their electrochemical performance. Nowadays, one of the key challenges to construct high-performance LIBs is how to develop cathode materials with high capacity and working voltage. This review provides an overview and future perspectives to develop next-generation LIBs with high electrochemical performance.
文摘As a main difficult problem encountered in electrochemical machining (ECM), the cathode design is tackled, at present, with various numerical analysis methods such as finite difference, finite element and boundary element methods. Among them, the finite element method presents more flexibility to deal with the irregularly shaped workpieces. However, it is very difficult to ensure the convergence of finite element numerical approach. This paper proposes an accurate model and a finite element numerical approach of cathode design based on the potential distribution in inter-electrode gap. In order to ensure the convergence of finite element numerical approach and increase the accuracy in cathode design, the cathode shape should be iterated to eliminate the design errors in computational process. Several experiments are conducted to verify the machining accuracy of the designed cathode. The experimental results have proven perfect convergence and good computing accuracy of the proposed finite element numerical approach by the high surface quality and dimensional accuracy of the machined blades.
基金supported by the National Key Program for Basic Research of China(No. 2009CB220100)the National 863 Program(No.2007AA03Z226)
文摘The structure and characteristic of carbon materials have a direct influence on the electrochemical performance of sulfur-carbon composite electrode materials for lithium-sulfur battery. In this paper, sulfur composite has been synthesized by heating a mixture of elemental sulfur and activated carbon, which is characterized as high specific surface area and microporous structure. The composite, contained 70% sulfur, as cathode in a lithium cell based on organic liquid electrolyte was tested at room temperature. It showed two reduction peaks at 2.05 V and 2.35 V, one oxidation peak at 2.4 V during cyclic voltammogram test. The initial discharge specific capacity was 1180.8 mAh g-1 and the utilization of electrochemically active sulfur was about 70.6% assuming a complete reaction to the product of Li2S. The specific capacity still kept as high as 720.4 mAh g^-1 after 60 cycles retaining 61% of the initial discharge capacity.
文摘To meet the growing energy demands, it is urgent for us to construct grid-scale energy storage systemthan can connect sustainable energy resources. Aqueous Li-ion batteries (ALIBs) have been widely in-vestigated to become the most promising stationary power sources for sustainable energy such as windand solar power. It is believed that advantages of ALIBs will overcome the limitations of the traditionalorganic lithium battery in virtue of the safety and environmentally friendly aqueous electrolyte. In thepast decades, plentiful works have been devoted to enhance the performance of different types of ALIBs.In this review, we discuss the development of cathode, anode and electrolyte for acquiring the desiredelectrochemical performance of ALIBs. Also. the main challenges and outlook in this field are briefly dis-cussed.
文摘The development of nanotechnology in the past two decades has generated great capability of controlling materials at the nanometer scale and has enabled exciting opportunities to design materials with desirable electronic, ionic, photonic, and mechanical properties. This development has also contributed to tile advance in energy storage, which is a critical technology in this century. In this article, we will review how the rational design of nanostructured materials has addressed the challenges of batteries and electrochemical capacitors and led to high-performance electrochemical energy storage devices. Four specific material systems will be discussed: i) nanostructured alloy anodes for Li-batteries, ii) nanostructured sulfur cathodes for Li-batteries, iii) nanoporous open- framework battery electrodes, and iv) nanostructured electrodes for electrochemical capacitors.
基金financially supported by the National Natural Science Foundation of China (No. 51574081)the Natural Science Foundation of Liaoning Province(No. 2014020035)
文摘A new P2-structured oxide Na0.8Ni0.4Mn0.6O2was synthesized using a solid reaction method in which Na2CO3, MnO2and NiO were used as starting materials.This oxide has a high amount of electrochemically active Ni and exhibits good electrochemical intercalation behavior of Na ions, including good rate capability and good cycle performance at both room temperature and elevated temperature. It displays two apparent voltage plateaus at about 3.6 and 3.3 V, and its discharge capacity reaches92 mAh·g-1at 0.1 C in the voltage range of 2.0-4.0 V. At1.0 C, its discharge capacity reaches 85.3 mAh·g-1. After80 cycles at different current rates, the as-prepared sample exhibits good capacity retention. At elevated temperature of 55 ℃, the discharge capacity remains the same at low current rate of 0.1 C, but at high current rate of 1.0 C, the discharge capacity is a little lower than that at room temperature.
基金financially supported by the Natural Science Foundation of Guangxi Province, China (No. GKZ0832256)
文摘The uniform layered LiNi1/3Co1/3Mn1/3O2 cathode material for lithium ion batteries was prepared by using (Ni1/3Co1/3Mn1/3)C2O4 as precursor synthesized via oxalate co-precipitation method in air. The effects of calcination temperature and time on the structure and electrochemical properties of the LiNi1/3Co1/3Mn1/3O2 were systemically studied. XRD results revealed that the optimal calcination conditions to prepare the layered LiNi1/3Co1/3Mn1/302 were 950℃ for 15 h. Electrochemical measurement showed that the sample prepared under the such conditions has the highest initial discharge capacity of 160.8 mAh/g and the smallest irreversible capacity loss of 13.5% as well as stable cycling performance at a constant current density of 30 mA/g between 2.5 and 4.3 V versus Li at room temperature.
文摘Lithium element has attracted remarkable attraction for energy storage devices, over the past 30 years. Lithium is a light element and exhibits the low atomic number 3, just after hydrogen and helium in the periodic table. The lithium atom has a strong tendency to release one electron and constitute a positive charge, as Li<sup> </sup>. Initially, lithium metal was employed as a negative electrode, which released electrons. However, it was observed that its structure changed after the repetition of charge-discharge cycles. To remedy this, the cathode mainly consisted of layer metal oxide and olive, e.g., cobalt oxide, LiFePO<sub>4</sub>, etc., along with some contents of lithium, while the anode was assembled by graphite and silicon, etc. Moreover, the electrolyte was prepared using the lithium salt in a suitable solvent to attain a greater concentration of lithium ions. Owing to the lithium ions’ role, the battery’s name was mentioned as a lithium-ion battery. Herein, the presented work describes the working and operational mechanism of the lithium-ion battery. Further, the lithium-ion batteries’ general view and future prospects have also been elaborated.