期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
基于朴素贝叶斯的电网用户行为分析 被引量:15
1
作者 胡昌斌 张亚 +2 位作者 李迎丽 万上英 张思路 《沈阳工业大学学报》 EI CAS 北大核心 2020年第3期259-263,共5页
针对电网数据利用率低、精度低、分析结果粗糙和分析层面浅等问题,提出了一种基于朴素贝叶斯分析的电网用户行为分析方法.使用模糊C均值聚类将电网用户的用电数据聚类为不同的用电模式,使用朴素贝叶斯分类器将用户的用电行为分为不同的... 针对电网数据利用率低、精度低、分析结果粗糙和分析层面浅等问题,提出了一种基于朴素贝叶斯分析的电网用户行为分析方法.使用模糊C均值聚类将电网用户的用电数据聚类为不同的用电模式,使用朴素贝叶斯分类器将用户的用电行为分为不同的类别,提取出其中主要的用电模式.某纺织企业的48点负荷数据仿真与测试结果表明,所提出方法在分析用户用电模式时的有效性良好,为电力系统的调控与运行提供了一种合理、有效的方法. 展开更多
关键词 电力工程 用电行为 模糊C均值聚类 贝叶斯分类 用电模式 电网负荷 行为分析 用电概率
下载PDF
基于DeepAR神经网络时间序列模型的电能消耗预测 被引量:4
2
作者 邱禧荷 茹亚军 +1 位作者 陈斌 郭韵 《江苏大学学报(自然科学版)》 CAS 北大核心 2022年第5期599-603,共5页
为实现对电能消耗进行准确预测,基于美国PJM公司数据集,采用基于深度自回归循环网络(deep autoregressive recurrent networks,Deep AR)时间序列模型,对Commonwealth Edison公司未来某12 h区间电能消耗进行预测.该模型基于长短期记忆网... 为实现对电能消耗进行准确预测,基于美国PJM公司数据集,采用基于深度自回归循环网络(deep autoregressive recurrent networks,Deep AR)时间序列模型,对Commonwealth Edison公司未来某12 h区间电能消耗进行预测.该模型基于长短期记忆网络(long short term memory network,LSTM)得到数据的分布参数,最后在高斯分布中进行采样,从而得到预测值.采用平均绝对误差(MAE)、均方根误差(RMSE)和平均绝对百分比误差(MAPE)作为预测短期电能消耗评价指标,并与差分整合移动平均自回归模型(autoregressive integrated moving average,ARIMA)算法模型和Prophet算法模型进行比较.结果表明:Deep AR算法模型的MAE、RMSE和MAPE分别为1070.01、1279.31和6.12%,预测准确率较高;该算法不仅能够预测未来一段时间的电能消耗,还能预测其概率分布,进一步刻画事件发生的全局性. 展开更多
关键词 时间序列模型 电能消耗预测 长短期记忆网络 Deep AR 概率分布
下载PDF
基于负荷数据分析的用户侧用电感知与失电影响评估方法研究 被引量:3
3
作者 李方舟 霍健 《山东电力技术》 2020年第3期35-41,48,共8页
提出一种基于调度侧配电网负荷数据分析进行负荷性质辨识与用户侧用电感知、失电影响评估的方法。利用调度自动化系统中的负荷数据,首先通过基于时间序列趋势的模糊C均值聚类方法求解馈线负荷曲线与典型负荷曲线的隶属度,判断馈线负荷性... 提出一种基于调度侧配电网负荷数据分析进行负荷性质辨识与用户侧用电感知、失电影响评估的方法。利用调度自动化系统中的负荷数据,首先通过基于时间序列趋势的模糊C均值聚类方法求解馈线负荷曲线与典型负荷曲线的隶属度,判断馈线负荷性质;然后利用用户侧多维系统中历史数据,通过基于用电量积分的概率谱方法,分析线路负荷异常波动对应的用户侧实际用电感知及故障影响。实际案例分析表明:该方法能够根据调度侧负荷数据分析,正确辨识配电线路的负荷性质,精准评估用户侧失电影响,建立配网运行数据与客户用电感知之间的实时映射,辅助配网调控人员根据用户需求开展方式调整与故障处置。 展开更多
关键词 负荷数据分析 用电感知 模糊C聚类 概率谱方法
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部