A two-dimensional axisymmetric finite element model is developed to analyze the transient thermal and mechanical behaviors of the Resistance Spot Welding (RSW) process using commercial software ANSYS. Firstly a dire...A two-dimensional axisymmetric finite element model is developed to analyze the transient thermal and mechanical behaviors of the Resistance Spot Welding (RSW) process using commercial software ANSYS. Firstly a direct-coupled electrical-thermal Finite Element Analysis (FEA) is performed to analyze the transient thermal characteristics of the RSW process. Then based on the thermal results a sequential coupled thermo-elastic-plastic analysis is conducted to determine the mechanical features of the RSW process. The thermal history of the whole process and the temperature distribution of the weldment are obtained through the analysis. The mechanical features, including the distributions of the contact pressure at both the faying surface and the electrode-workpiece interface, the stress and strain distributions in the weldment and their changes during the RSW process, the deformation of the weldment and the electrode displacement are also calculated.展开更多
This paper presents a blended analytical electrical–thermal model for steady state thermal analysis of through-silicon-via(TSV) in three-dimensional(3 D) integrated circuits. The proposed analytical model is vali...This paper presents a blended analytical electrical–thermal model for steady state thermal analysis of through-silicon-via(TSV) in three-dimensional(3 D) integrated circuits. The proposed analytical model is validated by the commercial FEM tool—COMSOL. The comparison between the results of the proposed analytical formulas and COMSOL shows that the proposed formulas have very high accuracy with a maximum error of 0.1%.Based on the analytical model, the temperature performance of TSV is studied. Design guide lines of TSV are also given as:(1) the radius of the TSV increases, the resistance decreases and the temperature can be increased;(2) the thicker the dielectric layer, the higher the temperature;(3) compared with carbon nanotube, the Cu enlarges the temperature by 34 K, and the W case enlarges the temperature by 41 K.展开更多
电力电子变压器长期运行于高频正弦电压下,其绝缘更易受到局部放电作用影响从而导致老化失效。为此以环氧树脂材料为研究对象,模拟电力电子变压器的运行条件,在30 k Hz、4 kV的正弦电压和温度120℃下开展了电热联合加速老化试验,研究了...电力电子变压器长期运行于高频正弦电压下,其绝缘更易受到局部放电作用影响从而导致老化失效。为此以环氧树脂材料为研究对象,模拟电力电子变压器的运行条件,在30 k Hz、4 kV的正弦电压和温度120℃下开展了电热联合加速老化试验,研究了不同老化阶段下绝缘的高频局部放电特征。实验结果表明:高频正弦电压下残余电荷扩散少,放电连续,放电相位范围超过90°,局部放电频繁冲击绝缘材料;随着老化时间的增长,高相位上的最大放电幅值由0.02 V增加到0.03 V,局部放电相位分布谱图(PRPD)中第2簇"三角"特征更为明显,统计参量Sk能较准确地反应绝缘的老化状态;同时,随着绝缘缺陷表面有效起始电子产生概率的变化,放电量和放电次数总体呈上升趋势,局部放电的相位范围向两端扩展。展开更多
文摘A two-dimensional axisymmetric finite element model is developed to analyze the transient thermal and mechanical behaviors of the Resistance Spot Welding (RSW) process using commercial software ANSYS. Firstly a direct-coupled electrical-thermal Finite Element Analysis (FEA) is performed to analyze the transient thermal characteristics of the RSW process. Then based on the thermal results a sequential coupled thermo-elastic-plastic analysis is conducted to determine the mechanical features of the RSW process. The thermal history of the whole process and the temperature distribution of the weldment are obtained through the analysis. The mechanical features, including the distributions of the contact pressure at both the faying surface and the electrode-workpiece interface, the stress and strain distributions in the weldment and their changes during the RSW process, the deformation of the weldment and the electrode displacement are also calculated.
基金supported by the National Natural Science Foundation of China(Nos.61574106,61574104)the National Defense Pre-Research Foundation of China(No.9140A23060115DZ01062)the Key Science and Technology Special Project of Shaanxi Province(No.2015KTCQ01-5)
文摘This paper presents a blended analytical electrical–thermal model for steady state thermal analysis of through-silicon-via(TSV) in three-dimensional(3 D) integrated circuits. The proposed analytical model is validated by the commercial FEM tool—COMSOL. The comparison between the results of the proposed analytical formulas and COMSOL shows that the proposed formulas have very high accuracy with a maximum error of 0.1%.Based on the analytical model, the temperature performance of TSV is studied. Design guide lines of TSV are also given as:(1) the radius of the TSV increases, the resistance decreases and the temperature can be increased;(2) the thicker the dielectric layer, the higher the temperature;(3) compared with carbon nanotube, the Cu enlarges the temperature by 34 K, and the W case enlarges the temperature by 41 K.