This research aims to address the pressing issue of failed and abandoned wells, causing water scarcity in Lapan Gwari Community, through an improved groundwater exploration approach integrating remote sensing and elec...This research aims to address the pressing issue of failed and abandoned wells, causing water scarcity in Lapan Gwari Community, through an improved groundwater exploration approach integrating remote sensing and electrical resistivity soundings. The study area, located within the Zungeru Sheet 163 SE, spans Latitudes 9°30'00"N to 9°32'00"N and Longitudes 6°28'00" to 6°30'00". The surface geologic, structural, and hydrogeological mapping provided essential insights into the hydrogeological framework. Leveraging SRTM DEM data, thematic maps were created for geomorphology, slope, land use, lineament density, and drainage density. These datasets were then integrated using ArcGIS to develop a preliminary groundwater potential zones map. Further investigations were conducted using Vertical Electrical Sounding (VES) and Electrical Resistivity Imaging (2D VES) surveys at targeted locations identified by the preliminary map. Results show that the study area predominantly consists of crystalline rocks of the Nigerian Basement Complex, primarily comprising schist and granite with minor occurrences of quartz vein intrusions. Surface joint directions indicated a dominant NE-SW trend. The VES data revealed three to four geoelectric layers, encompassing the topsoil (1 to 5 m depth, resistivity: 100 Ωm to 300 Ωm), the weathered layer (in the 3-layer system) or fractured layer (in the 4-layer system), and the fresh basement rock characterized by infinite resistivity. The shallow weathered layers (3 to 30 m thickness) are believed to hold aquiferous potential. Hydrogeological interpretation, facilitated by 2D resistivity models, delineated water horizons trapped within clayey sand and weathered/fractured formations. Notably, the aquifer resistivity range was found to be between 3 - 35 m and 100 - 300 Ωm, signifying a promising aquifer positioned at depths of 40 to 88 m. This aligns with corroborative static water level measurements. Given this, we recommend drilling depths of a minimum of 80 m to ensure the acquisition of 展开更多
Electrical resistivity tomography survey was deployed at a solid waste landfill in southwest Missouri USA with the intent to map variations in moisture content through the solid waste and underlying subsurface, and to...Electrical resistivity tomography survey was deployed at a solid waste landfill in southwest Missouri USA with the intent to map variations in moisture content through the solid waste and underlying subsurface, and to map the top of bedrock. Multichannel analyses of surface waves survey was also deployed to map variations in engineering properties of the solid waste and underlying subsurface, and to constrain the interpretations of top of bedrock. The 2-D resistivity images through the waste suggest rainwater seeps through the cap cover system of the solid waste landfill, and moisture content within the solid waste increases with solid waste burial depth. The resistivity anomalies displayed by the soil and bedrock directly underneath the solid waste suggests a lateral component to moisture infiltrating at the toe of the landfill, which is flowing inward to the base of solid waste structural low. The 1-D shear wave velocity profiles obtained from the multichannel analyses of surface waves survey helped interpret the top of bedrock underneath the solid waste, where top of bedrock is difficult to map using electrical resistivity tomography, as shallow fractured bedrock is moist and displays comparable resistivity values to that of overlying soil. Not surprisingly, the top of bedrock is readily identified on the electrical resistivity tomography profiles in places where subsurface is relatively dry. The deployment of the combined non- invasive, cost and time effective geophysical surveys, along with engineering judgement on available site history data, has reasonably identified potential landfill seepage pathways. The methodology presented could be used in similar site investigation settings.展开更多
Lack of access to potable and adequate water is a major problem for sustainable development in northern Ghana. Developing groundwater resource is the best option for safe, reliable, and cost-efficient water supplies t...Lack of access to potable and adequate water is a major problem for sustainable development in northern Ghana. Developing groundwater resource is the best option for safe, reliable, and cost-efficient water supplies to these dispersed communities. In this study, nine 2D ERI profiles were carried out with the Schlumberger array in eight communities underlain by the crystalline basement rocks in the Bole District of the Savannah Region of Ghana. The aim was to delineate the aquifer zones and select points for groundwater extraction. Nine boreholes were drilled from the selected points. The yield was found to vary from 12 to 180 l/min with a depth range of 50 to 70 m. The weathered and fractured zones together with the bedrock topography were clearly marked. It is evident that the 2D electrical resistivity technique is useful tool in determining the availability of groundwater in weathered and fractured crystalline environment.展开更多
The hydrogeology of the Basin Granitoids in the Sekyere South District of Ashanti Region of Ghana has been evaluated applying the electrical resistivity imaging (ERI) geophysical technique and pumping test analysis. T...The hydrogeology of the Basin Granitoids in the Sekyere South District of Ashanti Region of Ghana has been evaluated applying the electrical resistivity imaging (ERI) geophysical technique and pumping test analysis. The ERI was conducted to obtain information on resistivity distribution for groundwater accumulation and pumping test was used to obtain transmissivity and sustainable yields of boreholes. Results from the ERI technique show that the general resistivity distribution in the area is between (20 - 4000) Ω-m and the resistivity range that is related to groundwater occurrence is between (50 - 300) Ω-m for the weathered and (100 - 600) Ω-m for the fractured granitic rocks. The aquifers are generally shallow to medium depth and where resistivities of the aquifer zones are less than 400 Ω-m in the fresh granites, high yields are likely to be attained. Pumping test also revealed that transmissivity values range between (5.89 - 43) m2/day, with sustainable yields ranging between 50 - 380 m3/day. These results suggest that boreholes in the area will be sustainable for domestic supplies.展开更多
文摘This research aims to address the pressing issue of failed and abandoned wells, causing water scarcity in Lapan Gwari Community, through an improved groundwater exploration approach integrating remote sensing and electrical resistivity soundings. The study area, located within the Zungeru Sheet 163 SE, spans Latitudes 9°30'00"N to 9°32'00"N and Longitudes 6°28'00" to 6°30'00". The surface geologic, structural, and hydrogeological mapping provided essential insights into the hydrogeological framework. Leveraging SRTM DEM data, thematic maps were created for geomorphology, slope, land use, lineament density, and drainage density. These datasets were then integrated using ArcGIS to develop a preliminary groundwater potential zones map. Further investigations were conducted using Vertical Electrical Sounding (VES) and Electrical Resistivity Imaging (2D VES) surveys at targeted locations identified by the preliminary map. Results show that the study area predominantly consists of crystalline rocks of the Nigerian Basement Complex, primarily comprising schist and granite with minor occurrences of quartz vein intrusions. Surface joint directions indicated a dominant NE-SW trend. The VES data revealed three to four geoelectric layers, encompassing the topsoil (1 to 5 m depth, resistivity: 100 Ωm to 300 Ωm), the weathered layer (in the 3-layer system) or fractured layer (in the 4-layer system), and the fresh basement rock characterized by infinite resistivity. The shallow weathered layers (3 to 30 m thickness) are believed to hold aquiferous potential. Hydrogeological interpretation, facilitated by 2D resistivity models, delineated water horizons trapped within clayey sand and weathered/fractured formations. Notably, the aquifer resistivity range was found to be between 3 - 35 m and 100 - 300 Ωm, signifying a promising aquifer positioned at depths of 40 to 88 m. This aligns with corroborative static water level measurements. Given this, we recommend drilling depths of a minimum of 80 m to ensure the acquisition of
文摘Electrical resistivity tomography survey was deployed at a solid waste landfill in southwest Missouri USA with the intent to map variations in moisture content through the solid waste and underlying subsurface, and to map the top of bedrock. Multichannel analyses of surface waves survey was also deployed to map variations in engineering properties of the solid waste and underlying subsurface, and to constrain the interpretations of top of bedrock. The 2-D resistivity images through the waste suggest rainwater seeps through the cap cover system of the solid waste landfill, and moisture content within the solid waste increases with solid waste burial depth. The resistivity anomalies displayed by the soil and bedrock directly underneath the solid waste suggests a lateral component to moisture infiltrating at the toe of the landfill, which is flowing inward to the base of solid waste structural low. The 1-D shear wave velocity profiles obtained from the multichannel analyses of surface waves survey helped interpret the top of bedrock underneath the solid waste, where top of bedrock is difficult to map using electrical resistivity tomography, as shallow fractured bedrock is moist and displays comparable resistivity values to that of overlying soil. Not surprisingly, the top of bedrock is readily identified on the electrical resistivity tomography profiles in places where subsurface is relatively dry. The deployment of the combined non- invasive, cost and time effective geophysical surveys, along with engineering judgement on available site history data, has reasonably identified potential landfill seepage pathways. The methodology presented could be used in similar site investigation settings.
文摘Lack of access to potable and adequate water is a major problem for sustainable development in northern Ghana. Developing groundwater resource is the best option for safe, reliable, and cost-efficient water supplies to these dispersed communities. In this study, nine 2D ERI profiles were carried out with the Schlumberger array in eight communities underlain by the crystalline basement rocks in the Bole District of the Savannah Region of Ghana. The aim was to delineate the aquifer zones and select points for groundwater extraction. Nine boreholes were drilled from the selected points. The yield was found to vary from 12 to 180 l/min with a depth range of 50 to 70 m. The weathered and fractured zones together with the bedrock topography were clearly marked. It is evident that the 2D electrical resistivity technique is useful tool in determining the availability of groundwater in weathered and fractured crystalline environment.
文摘The hydrogeology of the Basin Granitoids in the Sekyere South District of Ashanti Region of Ghana has been evaluated applying the electrical resistivity imaging (ERI) geophysical technique and pumping test analysis. The ERI was conducted to obtain information on resistivity distribution for groundwater accumulation and pumping test was used to obtain transmissivity and sustainable yields of boreholes. Results from the ERI technique show that the general resistivity distribution in the area is between (20 - 4000) Ω-m and the resistivity range that is related to groundwater occurrence is between (50 - 300) Ω-m for the weathered and (100 - 600) Ω-m for the fractured granitic rocks. The aquifers are generally shallow to medium depth and where resistivities of the aquifer zones are less than 400 Ω-m in the fresh granites, high yields are likely to be attained. Pumping test also revealed that transmissivity values range between (5.89 - 43) m2/day, with sustainable yields ranging between 50 - 380 m3/day. These results suggest that boreholes in the area will be sustainable for domestic supplies.