The single-particle Schrödinger fluid model is designed mainly to calculate the moments of inertia of the axially symmetric deformed nuclei by assuming that each nucleon in the nucleus is moving in a single-parti...The single-particle Schrödinger fluid model is designed mainly to calculate the moments of inertia of the axially symmetric deformed nuclei by assuming that each nucleon in the nucleus is moving in a single-particle potential which is deformed with time t, through its parametric dependence on a classical shape variable α(t). Also, the Nilsson model is designed for the calculations of the single-particle energy levels, the magnetic dipole moments, and the electric quadrupole moments of axially symmetric deformed nuclei by assuming that all the nucleons are moving in the field of an anisotropic oscillator potential. On the other hand, the nuclear superfluidity model is designed for the calculations of the nuclear moments of inertia and the electric quadrupole moments of deformed nuclei which have no axes of symmetry by assuming that the nucleons are moving in a quadruple deformed potential. Furthermore, the cranked Nilsson model is designed for the calculations of the total nuclear energy and the quadrupole moments of deformed nuclei which have no axes of symmetry by modifying the Nilsson potential to include second and fourth order oscillations. Accordingly, to investigate whether the six p-shell isotopes <sup>6</sup>Li, <sup>7</sup>Li, <sup>8</sup>Li, <sup>9</sup>Li, <sup>10</sup>Li, and <sup>11</sup>Li have axes of symmetry or not, we applied the four mentioned models to each nucleus by calculating their moments of inertia, their magnetic dipole moments, and their electric quadrupole moments by varying the deformation parameter β and the non-axiality parameter γ in wide ranges of values for this reason. Hence for the assumption that these isotopes are deformed and have axes of symmetry, we applied the single-particle Schrödinger fluid model and the Nilsson model. On the other hand, for the assumption that these isotopes are deformed and have no axes of symmetry, we applied the cranked Nilsson model and the nuclear super fluidity model. As a result of our calculations, we can conclude that the nucleus <sup>6展开更多
The anomalous magnetic(MDM)and electric(EDM)dipole moments of theτlepton serve as crucial indicators of new physics beyond the standard model.Leveraging azimuthal angular asymmetry as a novel tool in ultraperipheral ...The anomalous magnetic(MDM)and electric(EDM)dipole moments of theτlepton serve as crucial indicators of new physics beyond the standard model.Leveraging azimuthal angular asymmetry as a novel tool in ultraperipheral collisions(UPCs),we attain unparalleled precision in the study of these key properties.Driven by the highly linear polarization of coherent photons,this method uniquely enables both the MDM and EDM to contribute to the cos 2φangular distribution in similar magnitudes.Importantly,our approach substantially narrows the parameter space,excluding more than half of it compared to expected UPC-based measurements reliant solely on the total cross-section.This method not only provides improved constraints but also minimizes the need for additional theoretical assumptions,and offers a novel avenue to probe the EDM effects.展开更多
Propagation of a few-cycle laser pulses in a dense V-type three-level atomic medium is investigated based on full-wave Maxwell-Bloch equations by taking the near dipole-dipole (NDD) interaction into account. We find...Propagation of a few-cycle laser pulses in a dense V-type three-level atomic medium is investigated based on full-wave Maxwell-Bloch equations by taking the near dipole-dipole (NDD) interaction into account. We find that the ratio, γ of the transition dipole moments has strong influence on the time evolution and split of the pulse: when γ≤ 1, the NDD interaction delays propagation and split of the pulse, and this phenomenon is more obvious when the value of γ is smaller; when γ =√2, the NDD interaction accelerates propagation and split of the pulse.展开更多
We analyze entanglement dynamics and transfer in a system composed of two initially correlated two-level atoms, in which each atom is coupled with another atom interacting with its own reservoir. Considering atomic di...We analyze entanglement dynamics and transfer in a system composed of two initially correlated two-level atoms, in which each atom is coupled with another atom interacting with its own reservoir. Considering atomic dipole-dipole interactions, the results show that dipole-dipole interactions restrain the entanglement birth of the reservoirs, and a parametric region of dipole-dipole interaction strength exists in which the maximal entanglement of two initially uncorrelated atoms is reduced. The transfer of entanglement shows obvious different behaviors in two initial Bell-like states.展开更多
Light emitted by an atomic source of radiation appears to travel along a straight line (ray) from the location of the source to the observer in the far field. However, when the energy flow pattern of the radiation i...Light emitted by an atomic source of radiation appears to travel along a straight line (ray) from the location of the source to the observer in the far field. However, when the energy flow pattern of the radiation is resolved with an accuracy better than an optical wavelength, it turns out that the field lines are usually curved. We consider electric dipole radiation, a prime example of which is the radiation emitted by an atom during an electronic transition, and we show that the field lines of energy flow are in general curves. Near the location of the dipole, the field lines exhibit a vortex structure, and in the far field they approach a straight line. The spatial extension of the vortex in the optical near field is of nanoscale dimension. Due to the rotation of the field lines near the source, the asymptotic limit of a field line is not exactly in the radially outward direction and as a consequence, the image in the far field is slightly shifted. This sub-wavelength displacement of the image of the source should be amenable to experimental observation with contemporary nanoscale-precision techniques.展开更多
An accurate electric dipole moment function(EDMF) is obtained for the carbon monoxide(CO) molecule(X1+Σ)by fitting the experimental rovibrational transitional moments. Additionally, an accurate ab initio EDMF is foun...An accurate electric dipole moment function(EDMF) is obtained for the carbon monoxide(CO) molecule(X1+Σ)by fitting the experimental rovibrational transitional moments. Additionally, an accurate ab initio EDMF is found using the highly accurate, multi-reference averaged coupled-pair functional(ACPF) approach with the basis set, aug-cc-p V6 Z, and a finite-field with ±0.005 a.u.(The unit a.u. is the abbreviation of atomic unit). This ab initio EDMF is very consistent with the fitted ones. The vibrational transition matrix moments and the Herman–Wallis factors, calculated with the Rydberg–Klein–Rees(RKR) potential and the fitted and ab initio EDMFs, are compared with experimental measurements. The consistency of these line intensities with the high-resolution transmission(HITRAN) molecular database demonstrates the improved accuracy of the fitted and ab initio EDMFs derived in this work.展开更多
文摘The single-particle Schrödinger fluid model is designed mainly to calculate the moments of inertia of the axially symmetric deformed nuclei by assuming that each nucleon in the nucleus is moving in a single-particle potential which is deformed with time t, through its parametric dependence on a classical shape variable α(t). Also, the Nilsson model is designed for the calculations of the single-particle energy levels, the magnetic dipole moments, and the electric quadrupole moments of axially symmetric deformed nuclei by assuming that all the nucleons are moving in the field of an anisotropic oscillator potential. On the other hand, the nuclear superfluidity model is designed for the calculations of the nuclear moments of inertia and the electric quadrupole moments of deformed nuclei which have no axes of symmetry by assuming that the nucleons are moving in a quadruple deformed potential. Furthermore, the cranked Nilsson model is designed for the calculations of the total nuclear energy and the quadrupole moments of deformed nuclei which have no axes of symmetry by modifying the Nilsson potential to include second and fourth order oscillations. Accordingly, to investigate whether the six p-shell isotopes <sup>6</sup>Li, <sup>7</sup>Li, <sup>8</sup>Li, <sup>9</sup>Li, <sup>10</sup>Li, and <sup>11</sup>Li have axes of symmetry or not, we applied the four mentioned models to each nucleus by calculating their moments of inertia, their magnetic dipole moments, and their electric quadrupole moments by varying the deformation parameter β and the non-axiality parameter γ in wide ranges of values for this reason. Hence for the assumption that these isotopes are deformed and have axes of symmetry, we applied the single-particle Schrödinger fluid model and the Nilsson model. On the other hand, for the assumption that these isotopes are deformed and have no axes of symmetry, we applied the cranked Nilsson model and the nuclear super fluidity model. As a result of our calculations, we can conclude that the nucleus <sup>6
基金supported by the National Natural Science Foundation of China(Grant Nos.12275052,and 12147101)supported by the National Natural Science Foundation of China(Grant Nos.11725520,11675002,and 12235001)+1 种基金Shanghai Natural Science Foundation(Grant No.21ZR1406100)supported by the Institute of High Energy Physics(Contract No.E25153U1)。
文摘The anomalous magnetic(MDM)and electric(EDM)dipole moments of theτlepton serve as crucial indicators of new physics beyond the standard model.Leveraging azimuthal angular asymmetry as a novel tool in ultraperipheral collisions(UPCs),we attain unparalleled precision in the study of these key properties.Driven by the highly linear polarization of coherent photons,this method uniquely enables both the MDM and EDM to contribute to the cos 2φangular distribution in similar magnitudes.Importantly,our approach substantially narrows the parameter space,excluding more than half of it compared to expected UPC-based measurements reliant solely on the total cross-section.This method not only provides improved constraints but also minimizes the need for additional theoretical assumptions,and offers a novel avenue to probe the EDM effects.
基金the National Basic Research Program of China (No.2006CB806003)the National Natural Science Foundation of China (No.10675076)+2 种基金the Natural Science Foundation of Shandong Province (No.Y2006A21)State Key Laboratory of High Field Laser Physics,Shanghai Institute of OpticsFine Mechanics,Chinese Academy of Sciences.
文摘Propagation of a few-cycle laser pulses in a dense V-type three-level atomic medium is investigated based on full-wave Maxwell-Bloch equations by taking the near dipole-dipole (NDD) interaction into account. We find that the ratio, γ of the transition dipole moments has strong influence on the time evolution and split of the pulse: when γ≤ 1, the NDD interaction delays propagation and split of the pulse, and this phenomenon is more obvious when the value of γ is smaller; when γ =√2, the NDD interaction accelerates propagation and split of the pulse.
基金supported by the National Natural Science Foundation of China (Nos. 61178012 and 10947006)the Specialized Research Fund for the Doctoral Program of Higher Education (No. 20093705110001)
文摘We analyze entanglement dynamics and transfer in a system composed of two initially correlated two-level atoms, in which each atom is coupled with another atom interacting with its own reservoir. Considering atomic dipole-dipole interactions, the results show that dipole-dipole interactions restrain the entanglement birth of the reservoirs, and a parametric region of dipole-dipole interaction strength exists in which the maximal entanglement of two initially uncorrelated atoms is reduced. The transfer of entanglement shows obvious different behaviors in two initial Bell-like states.
文摘Light emitted by an atomic source of radiation appears to travel along a straight line (ray) from the location of the source to the observer in the far field. However, when the energy flow pattern of the radiation is resolved with an accuracy better than an optical wavelength, it turns out that the field lines are usually curved. We consider electric dipole radiation, a prime example of which is the radiation emitted by an atom during an electronic transition, and we show that the field lines of energy flow are in general curves. Near the location of the dipole, the field lines exhibit a vortex structure, and in the far field they approach a straight line. The spatial extension of the vortex in the optical near field is of nanoscale dimension. Due to the rotation of the field lines near the source, the asymptotic limit of a field line is not exactly in the radially outward direction and as a consequence, the image in the far field is slightly shifted. This sub-wavelength displacement of the image of the source should be amenable to experimental observation with contemporary nanoscale-precision techniques.
基金supported by the National Natural Science Foundation of China(Grant Nos.11374217 and 11474207)
文摘An accurate electric dipole moment function(EDMF) is obtained for the carbon monoxide(CO) molecule(X1+Σ)by fitting the experimental rovibrational transitional moments. Additionally, an accurate ab initio EDMF is found using the highly accurate, multi-reference averaged coupled-pair functional(ACPF) approach with the basis set, aug-cc-p V6 Z, and a finite-field with ±0.005 a.u.(The unit a.u. is the abbreviation of atomic unit). This ab initio EDMF is very consistent with the fitted ones. The vibrational transition matrix moments and the Herman–Wallis factors, calculated with the Rydberg–Klein–Rees(RKR) potential and the fitted and ab initio EDMFs, are compared with experimental measurements. The consistency of these line intensities with the high-resolution transmission(HITRAN) molecular database demonstrates the improved accuracy of the fitted and ab initio EDMFs derived in this work.
基金The US Department of Energy Grants(DE-FG05-88ER40407,DE-FG02-95ER40934,DE-FG02-95ER40939,DE-FG05-87ER40311)and Contract(W-7405-ENG48,DE-AC03-76SF00098,DE-AC07-99ID13727,DE-AC07-761DO1570)The Work at Tsinghua University was supported by National Natural Science Foundation of China(19775028,10375032,10775078)by Major State Basic Research Development Program of China(2007CB815005,G2000077400)~~