期刊导航
期刊开放获取
cqvip
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
RS-CS-SVM在电液伺服系统故障诊断中的应用
被引量:
1
1
作者
孙海霞
木合塔尔.克力木
+1 位作者
王晨
李卉
《组合机床与自动化加工技术》
北大核心
2018年第6期47-50,55,共5页
针对电液伺服系统故障数据冗杂、非线性以及多样性等问题,提出了一种基于Rough Set(RS)和Cuckoo Search(CS)算法优化的Support Vector Machine(SVM)的故障诊断方法。该方法通过AMESim仿真软件对穿戴式康复训练机器人电液伺服系统进行建...
针对电液伺服系统故障数据冗杂、非线性以及多样性等问题,提出了一种基于Rough Set(RS)和Cuckoo Search(CS)算法优化的Support Vector Machine(SVM)的故障诊断方法。该方法通过AMESim仿真软件对穿戴式康复训练机器人电液伺服系统进行建模,并提取故障特征量;利用粗糙集把故障特征量的冗余信息剔除,再利用布谷鸟算法优化进行向量机参数的选取,将优化处理后的故障数据作为样本输入支持向量机,实现故障诊断和分类。通过将该方法与其他几种优化支持向量机方法相比较,这种方法对于电液伺服系统故障数据冗杂、非线性及较差的故障分类具有很好的诊断功能,且其诊断正确率较高以及诊断时间大大缩短。
展开更多
关键词
粗糙集
布谷鸟算法搜索
支持向量机
电液伺服系统
故障诊断
下载PDF
职称材料
题名
RS-CS-SVM在电液伺服系统故障诊断中的应用
被引量:
1
1
作者
孙海霞
木合塔尔.克力木
王晨
李卉
机构
新疆大学机械工程学院
出处
《组合机床与自动化加工技术》
北大核心
2018年第6期47-50,55,共5页
基金
国家自然科学基金项目(51365052)
文摘
针对电液伺服系统故障数据冗杂、非线性以及多样性等问题,提出了一种基于Rough Set(RS)和Cuckoo Search(CS)算法优化的Support Vector Machine(SVM)的故障诊断方法。该方法通过AMESim仿真软件对穿戴式康复训练机器人电液伺服系统进行建模,并提取故障特征量;利用粗糙集把故障特征量的冗余信息剔除,再利用布谷鸟算法优化进行向量机参数的选取,将优化处理后的故障数据作为样本输入支持向量机,实现故障诊断和分类。通过将该方法与其他几种优化支持向量机方法相比较,这种方法对于电液伺服系统故障数据冗杂、非线性及较差的故障分类具有很好的诊断功能,且其诊断正确率较高以及诊断时间大大缩短。
关键词
粗糙集
布谷鸟算法搜索
支持向量机
电液伺服系统
故障诊断
Keywords
rough
set
cuckoo
search
support
vector
machin
elector
-
hydraulic
servo system
fault
diagnosis
分类号
TH137.9 [机械工程—机械制造及自动化]
TG506 [金属学及工艺—金属切削加工及机床]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
RS-CS-SVM在电液伺服系统故障诊断中的应用
孙海霞
木合塔尔.克力木
王晨
李卉
《组合机床与自动化加工技术》
北大核心
2018
1
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部