The moving least-square approximation is discussed first. Sometimes the method can form an ill-conditioned equation system, and thus the solution cannot be obtained correctly. A Hilbert space is presented on which an ...The moving least-square approximation is discussed first. Sometimes the method can form an ill-conditioned equation system, and thus the solution cannot be obtained correctly. A Hilbert space is presented on which an orthogonal function system mixed a weight function is defined. Next the improved moving least-square approximation is discussed in detail. The improved method has higher computational efficiency and precision than the old method, and cannot form an ill-conditioned equation system. A boundary element-free method (BEFM) for elastodynamics problems is presented by combining the boundary integral equation method for elastodynamics and the improved moving least-square approximation. The boundary element-free method is a meshless method of boundary integral equation and is a direct numerical method compared with others, in which the basic unknowns are the real solutions of the nodal variables and the boundary conditions can be applied easily. The boundary element-free method has a higher computational efficiency and precision. In addition, the numerical procedure of the boundary element-free method for elastodynamics problems is presented in this paper. Finally, some numerical examples are given.展开更多
According to the basic idea of classical yin-yang complementarity and modern dual-complementarity, in a simple and unified new way proposed by Luo, the unconventional Hamilton-type variational principles for electroma...According to the basic idea of classical yin-yang complementarity and modern dual-complementarity, in a simple and unified new way proposed by Luo, the unconventional Hamilton-type variational principles for electromagnetic elastodynamics can be established systematically. This new variational principles can fully characterize the initial-boundary-value problem of this dynamics. In this paper, the expression of the generalized principle of virtual work for electromagnetic dynamics is given. Based on this equation, it is possible not only to obtain the principle of virtual work in electromagnetic dynamics, but also to derive systematically the complementary functionals for eleven-field, nine-field and six-field unconventional Hamilton-type variational principles for electromagnetic elastodynamics, and the potential energy functionals for four-field and three-field ones by the generalized Legendre transformation given in this paper. Furthermore, with this approach, the intrinsic relationship among various principles can be explained clearly.展开更多
In tills paper, the numerical implementation of boundary element methods with overlapping domain decomposition method for solving the Navier equations of linear elastodynamics problems in Fourier transformed domain. T...In tills paper, the numerical implementation of boundary element methods with overlapping domain decomposition method for solving the Navier equations of linear elastodynamics problems in Fourier transformed domain. The computer program is compiled with Fortran 77 and several numerical examples are presented with the test on the relation of convergence rate with the overlapping size.展开更多
This paper presents a theoretical solution for the basic equation of axisymmetric problems in elastodynamics.The solution is composed of a quasi-static solution which satisfies inhomogeneous boundary conditions and a ...This paper presents a theoretical solution for the basic equation of axisymmetric problems in elastodynamics.The solution is composed of a quasi-static solution which satisfies inhomogeneous boundary conditions and a dynamic solution which satisfies homogeneous boundary conditions.After the quasi-static so- lution has been obtained an inhomogeneous equation for dynamic solution is found from the basic equation. By making use of eigenvalue problem of a corresponding homogeneous equation,a finite Hankel transform is defined.A dynamic solution satisfying homogeneous boundary conditions is obtained by means of the finite Hankel transform and Laplace transform.Thus,an exact solution is obtained.Through an example of hollow cylinders under dynamic load,it is seen that the method,and the process of computing are simple,effective and accurate.展开更多
The scaled boundary finite element method(SBFEM) is a semi-analytical numerical method,which models an analysis domain by a small number of large-sized subdomains and discretises subdomain boundaries only.In a subdoma...The scaled boundary finite element method(SBFEM) is a semi-analytical numerical method,which models an analysis domain by a small number of large-sized subdomains and discretises subdomain boundaries only.In a subdomain,all fields of state variables including displacement,stress,velocity and acceleration are semi-analytical,and the kinetic energy,strain energy and energy error are all integrated semi-analytically.These advantages are taken in this study to develop a posteriori h-hierarchical adaptive SBFEM for transient elastodynamic problems using a mesh refinement procedure which subdivides subdomains.Because only a small number of subdomains are subdivided,mesh refinement is very simple and efficient,and mesh mapping to transfer state variables from an old mesh to a new one is also very simple but accurate.Two 2D examples with stress wave propagation were modelled.The results show that the developed method is capable of capturing propagation of steep stress regions and calculating accurate dynamic responses,using only a fraction of degrees of freedom required by adaptive finite element method.展开更多
基金supported by the National Natural Science Foundation of China(Grant No.10571118)the Shanghai Leading Academic Discipline Project(Grant No.Y0103).
文摘The moving least-square approximation is discussed first. Sometimes the method can form an ill-conditioned equation system, and thus the solution cannot be obtained correctly. A Hilbert space is presented on which an orthogonal function system mixed a weight function is defined. Next the improved moving least-square approximation is discussed in detail. The improved method has higher computational efficiency and precision than the old method, and cannot form an ill-conditioned equation system. A boundary element-free method (BEFM) for elastodynamics problems is presented by combining the boundary integral equation method for elastodynamics and the improved moving least-square approximation. The boundary element-free method is a meshless method of boundary integral equation and is a direct numerical method compared with others, in which the basic unknowns are the real solutions of the nodal variables and the boundary conditions can be applied easily. The boundary element-free method has a higher computational efficiency and precision. In addition, the numerical procedure of the boundary element-free method for elastodynamics problems is presented in this paper. Finally, some numerical examples are given.
基金the National Natural Science Foundation of China ( Grant No. 10172097) the Scientific Foundation of the Ministry of Education of China for Doctoral Program ( Grant No. 20030558025).
文摘According to the basic idea of classical yin-yang complementarity and modern dual-complementarity, in a simple and unified new way proposed by Luo, the unconventional Hamilton-type variational principles for electromagnetic elastodynamics can be established systematically. This new variational principles can fully characterize the initial-boundary-value problem of this dynamics. In this paper, the expression of the generalized principle of virtual work for electromagnetic dynamics is given. Based on this equation, it is possible not only to obtain the principle of virtual work in electromagnetic dynamics, but also to derive systematically the complementary functionals for eleven-field, nine-field and six-field unconventional Hamilton-type variational principles for electromagnetic elastodynamics, and the potential energy functionals for four-field and three-field ones by the generalized Legendre transformation given in this paper. Furthermore, with this approach, the intrinsic relationship among various principles can be explained clearly.
文摘In tills paper, the numerical implementation of boundary element methods with overlapping domain decomposition method for solving the Navier equations of linear elastodynamics problems in Fourier transformed domain. The computer program is compiled with Fortran 77 and several numerical examples are presented with the test on the relation of convergence rate with the overlapping size.
文摘This paper presents a theoretical solution for the basic equation of axisymmetric problems in elastodynamics.The solution is composed of a quasi-static solution which satisfies inhomogeneous boundary conditions and a dynamic solution which satisfies homogeneous boundary conditions.After the quasi-static so- lution has been obtained an inhomogeneous equation for dynamic solution is found from the basic equation. By making use of eigenvalue problem of a corresponding homogeneous equation,a finite Hankel transform is defined.A dynamic solution satisfying homogeneous boundary conditions is obtained by means of the finite Hankel transform and Laplace transform.Thus,an exact solution is obtained.Through an example of hollow cylinders under dynamic load,it is seen that the method,and the process of computing are simple,effective and accurate.
基金supported by the National Natural Science Foundation of China(Grant No.50579081)EPSRC UK(Grant No.EP/F00656X/1)+1 种基金the State Key Laboratory of Water Resources and Hydropower Engineering Science,Wuhan University,China through an open Research (Grant No.2010A004)Zhang's one-year research visit to the University of Liv-erpool was funded by China Scholarship Council
文摘The scaled boundary finite element method(SBFEM) is a semi-analytical numerical method,which models an analysis domain by a small number of large-sized subdomains and discretises subdomain boundaries only.In a subdomain,all fields of state variables including displacement,stress,velocity and acceleration are semi-analytical,and the kinetic energy,strain energy and energy error are all integrated semi-analytically.These advantages are taken in this study to develop a posteriori h-hierarchical adaptive SBFEM for transient elastodynamic problems using a mesh refinement procedure which subdivides subdomains.Because only a small number of subdomains are subdivided,mesh refinement is very simple and efficient,and mesh mapping to transfer state variables from an old mesh to a new one is also very simple but accurate.Two 2D examples with stress wave propagation were modelled.The results show that the developed method is capable of capturing propagation of steep stress regions and calculating accurate dynamic responses,using only a fraction of degrees of freedom required by adaptive finite element method.