This study sets up two new merit functions,which are minimized for the detection of real eigenvalue and complex eigenvalue to address nonlinear eigenvalue problems.For each eigen-parameter the vector variable is solve...This study sets up two new merit functions,which are minimized for the detection of real eigenvalue and complex eigenvalue to address nonlinear eigenvalue problems.For each eigen-parameter the vector variable is solved from a nonhomogeneous linear system obtained by reducing the number of eigen-equation one less,where one of the nonzero components of the eigenvector is normalized to the unit and moves the column containing that component to the right-hand side as a nonzero input vector.1D and 2D golden section search algorithms are employed to minimize the merit functions to locate real and complex eigenvalues.Simultaneously,the real and complex eigenvectors can be computed very accurately.A simpler approach to the nonlinear eigenvalue problems is proposed,which implements a normalization condition for the uniqueness of the eigenvector into the eigenequation directly.The real eigenvalues can be computed by the fictitious time integration method(FTIM),which saves computational costs compared to the one-dimensional golden section search algorithm(1D GSSA).The simpler method is also combined with the Newton iterationmethod,which is convergent very fast.All the proposed methods are easily programmed to compute the eigenvalue and eigenvector with high accuracy and efficiency.展开更多
We establish the exponential stability of fast traveling pulse solutions to nonlinear singularly per-turbed systems of integral differential equations arising from neuronal networks.It has been proved that expo-nentia...We establish the exponential stability of fast traveling pulse solutions to nonlinear singularly per-turbed systems of integral differential equations arising from neuronal networks.It has been proved that expo-nential stability of these orbits is equivalent to linear stability.Let (?) be the linear differential operator obtainedby linearizing the nonlinear system about its fast pulse,and let σ((?)) be the spectrum of (?).The linearizedstability criterion says that if max{Reλ:λ∈σ((?)),λ≠0}(?)-D,for some positive constant D,and λ=0 is asimple eigenvalue of (?)(ε),then the stability follows immediately (see [13] and [37]).Therefore,to establish theexponential stability of the fast pulse,it suffices to investigate the spectrum of the operator (?).It is relativelyeasy to find the continuous spectrum,but it is very difficult to find the isolated spectrum.The real part ofthe continuous spectrum has a uniformly negative upper bound,hence it causes no threat to the stability.Itremains to see if the isolated spectrum is safe.Eigenvalue functions (see [14] and [35,36]) have been a powerful tool to study the isolated spectrum of the as-sociated linear differential operators because the zeros of the eigenvalue functions coincide with the eigenvaluesof the operators.There have been some known methods to define eigenvalue functions for nonlinear systems ofreaction diffusion equations and for nonlinear dispersive wave equations.But for integral differential equations,we have to use different ideas to construct eigenvalue functions.We will use the method of variation of param-eters to construct the eigenvalue functions in the complex plane C.By analyzing the eigenvalue functions,wefind that there are no nonzero eigenvalues of (?) in {λ∈C:Reλ(?)-D} for the fast traveling pulse.Moreoverλ=0 is simple.This implies that the exponential stability of the fast orbits is true.展开更多
Fourier modal method incorporating staircase approximation is used to study tapered crossed subwavelength gratings in this paper. Three intuitive formulations of eigenvalue functions originating from the prototype are...Fourier modal method incorporating staircase approximation is used to study tapered crossed subwavelength gratings in this paper. Three intuitive formulations of eigenvalue functions originating from the prototype are presented, and their convergences are compared through numerical calculation. One of them is found to be suitable in modeling the diffraction efficiency of the circular tapered crossed subwavelength gratings without high absorption, and staircase approximation is further proven valid for non-highly-absorptive tapered gratings. This approach is used to simulate the "moth-eye" antireflection surface on silicon, and the numerical result agrees well with the experimental one.展开更多
The authors establish the existence and stability of standing wave solutions of a nonlinear singularly perturbed system of integral differential equations and a non- linear scalar integral differential equation. It wi...The authors establish the existence and stability of standing wave solutions of a nonlinear singularly perturbed system of integral differential equations and a non- linear scalar integral differential equation. It will be shown that there exist six standing wave solutions ((u(x,t),w(x,t)) = (U(x),W(x)) to the nonlinear singularly perturbed system of integral differential equations. Similarly, there exist six standing wave so- lutions u(x,t) = U(x) to the nonlinear scalar integral differential equation. The main idea to establish the stability is to construct Evans functions corresponding to several associated eigenvalue problems.展开更多
This paper discusses the sensitivity analysis of semisimple eigenvalues and associated eigen-matrix triples of regular quadratic eigenvalue problems analytically dependent on several parameters. The directional deriva...This paper discusses the sensitivity analysis of semisimple eigenvalues and associated eigen-matrix triples of regular quadratic eigenvalue problems analytically dependent on several parameters. The directional derivatives of semisimple eigenvalues are obtained. The average of semisimple eigenvalues and corresponding eigen-matrix triple are proved to be analytic, and their partial derivatives are given. On these grounds, the sensitivities of the semisimple eigenvalues and corresponding eigenvector matrices are defined.展开更多
基金the National Science and Tech-nology Council,Taiwan for their financial support(Grant Number NSTC 111-2221-E-019-048).
文摘This study sets up two new merit functions,which are minimized for the detection of real eigenvalue and complex eigenvalue to address nonlinear eigenvalue problems.For each eigen-parameter the vector variable is solved from a nonhomogeneous linear system obtained by reducing the number of eigen-equation one less,where one of the nonzero components of the eigenvector is normalized to the unit and moves the column containing that component to the right-hand side as a nonzero input vector.1D and 2D golden section search algorithms are employed to minimize the merit functions to locate real and complex eigenvalues.Simultaneously,the real and complex eigenvectors can be computed very accurately.A simpler approach to the nonlinear eigenvalue problems is proposed,which implements a normalization condition for the uniqueness of the eigenvector into the eigenequation directly.The real eigenvalues can be computed by the fictitious time integration method(FTIM),which saves computational costs compared to the one-dimensional golden section search algorithm(1D GSSA).The simpler method is also combined with the Newton iterationmethod,which is convergent very fast.All the proposed methods are easily programmed to compute the eigenvalue and eigenvector with high accuracy and efficiency.
基金This project is partly supported by the Reidler Foundation
文摘We establish the exponential stability of fast traveling pulse solutions to nonlinear singularly per-turbed systems of integral differential equations arising from neuronal networks.It has been proved that expo-nential stability of these orbits is equivalent to linear stability.Let (?) be the linear differential operator obtainedby linearizing the nonlinear system about its fast pulse,and let σ((?)) be the spectrum of (?).The linearizedstability criterion says that if max{Reλ:λ∈σ((?)),λ≠0}(?)-D,for some positive constant D,and λ=0 is asimple eigenvalue of (?)(ε),then the stability follows immediately (see [13] and [37]).Therefore,to establish theexponential stability of the fast pulse,it suffices to investigate the spectrum of the operator (?).It is relativelyeasy to find the continuous spectrum,but it is very difficult to find the isolated spectrum.The real part ofthe continuous spectrum has a uniformly negative upper bound,hence it causes no threat to the stability.Itremains to see if the isolated spectrum is safe.Eigenvalue functions (see [14] and [35,36]) have been a powerful tool to study the isolated spectrum of the as-sociated linear differential operators because the zeros of the eigenvalue functions coincide with the eigenvaluesof the operators.There have been some known methods to define eigenvalue functions for nonlinear systems ofreaction diffusion equations and for nonlinear dispersive wave equations.But for integral differential equations,we have to use different ideas to construct eigenvalue functions.We will use the method of variation of param-eters to construct the eigenvalue functions in the complex plane C.By analyzing the eigenvalue functions,wefind that there are no nonzero eigenvalues of (?) in {λ∈C:Reλ(?)-D} for the fast traveling pulse.Moreoverλ=0 is simple.This implies that the exponential stability of the fast orbits is true.
基金Project supported by the National Natural Science Foundation of China (Grant No. 60636030)
文摘Fourier modal method incorporating staircase approximation is used to study tapered crossed subwavelength gratings in this paper. Three intuitive formulations of eigenvalue functions originating from the prototype are presented, and their convergences are compared through numerical calculation. One of them is found to be suitable in modeling the diffraction efficiency of the circular tapered crossed subwavelength gratings without high absorption, and staircase approximation is further proven valid for non-highly-absorptive tapered gratings. This approach is used to simulate the "moth-eye" antireflection surface on silicon, and the numerical result agrees well with the experimental one.
文摘The authors establish the existence and stability of standing wave solutions of a nonlinear singularly perturbed system of integral differential equations and a non- linear scalar integral differential equation. It will be shown that there exist six standing wave solutions ((u(x,t),w(x,t)) = (U(x),W(x)) to the nonlinear singularly perturbed system of integral differential equations. Similarly, there exist six standing wave so- lutions u(x,t) = U(x) to the nonlinear scalar integral differential equation. The main idea to establish the stability is to construct Evans functions corresponding to several associated eigenvalue problems.
基金Supported by Shanghai Natural Science Fund(No.15ZR1408400)
文摘This paper discusses the sensitivity analysis of semisimple eigenvalues and associated eigen-matrix triples of regular quadratic eigenvalue problems analytically dependent on several parameters. The directional derivatives of semisimple eigenvalues are obtained. The average of semisimple eigenvalues and corresponding eigen-matrix triple are proved to be analytic, and their partial derivatives are given. On these grounds, the sensitivities of the semisimple eigenvalues and corresponding eigenvector matrices are defined.