Microbes play important roles in the transport and transformation of selenium(Se) in the environment, thereby influencing plant resistance to Se and Se accumulation in plant. The objectives are to characterize the bac...Microbes play important roles in the transport and transformation of selenium(Se) in the environment, thereby influencing plant resistance to Se and Se accumulation in plant. The objectives are to characterize the bacteria with high Se tolerance and reduction capacity and explore the significance of microbial origins on their Se tolerance, reduction rate and efficiency. Two bacterial strains were isolated from a naturally occurred Se-rich soil at tea orchard in southern Anhui Province, China. The reduction kinetics of selenite was investigated and the reducing product was characterized using scanning electron microscopy and transmission electron microscopy-energy dispersive spectroscopy. The bacteria were identified as Lysinibacillus xylanilyticus and Lysinibacillus macrolides,respectively, using morphological, physiological and molecular methods. The results showed that the minimal inhibitory concentrations(MICs) of selenite for L. xylanilyticus and L. macrolides were 120 and 220 mmol/L, respectively, while MICs of selenate for L.xylanilyticus and L. macrolides were 800 and 700 mmol/L, respectively. Both strains aerobically reduced selenite with an initial concentration of 1.0 mmol/L to elemental Se nanoparticles(SeNPs) completely within 36 hr. Biogenic SeNPs were observed both inside and outside the cells suggesting either an intra-or extracellular reduction process. Our study implied that the microbes from Se-rich environments were more tolerant to Se and generally quicker and more efficient than those from Se-free habitats in the reduction of Se oxyanions. The bacterial strains with high Se reduction capacity and the biological synthesized Se NPs would have potential applications in agriculture, food, environment and medicine.展开更多
On average, long-haul trucks in the U.S. use approximately 667 million gallons of fuel each year just for idling. This idling primarily facilitates climate control operations during driver rest periods. To mitigate th...On average, long-haul trucks in the U.S. use approximately 667 million gallons of fuel each year just for idling. This idling primarily facilitates climate control operations during driver rest periods. To mitigate this, our study explored ways to diminish the electrical consumption of climate control systems in class 8 trucks through innovative load reduction technologies. We utilized the CoolCalc software, developed by the National Renewable Energy Laboratory (NREL), which integrates heat transfer principles with extensive weather data from across the U.S. to mimic the environmental conditions trucks face year-round. The analysis of the CoolCalc simulations was performed using MATLAB. We assessed the impact of various technologies, including white paint, advanced curtains, and Thinsulate insulation on reducing electrical demand compared to standard conditions. Our findings indicate that trucks operating in the eastern U.S. could see electrical load reductions of up to 40%, while those in the western regions could achieve reductions as high as 55%. Such significant decreases in energy consumption mean that a 10 kWh battery system could sufficiently manage the HVAC needs of these trucks throughout the year without idling. Given that many long-haul trucks are equipped with battery systems of around 800 Ah (9.6 kWh), implementing these advanced technologies could substantially curtail the necessity for idling to power air conditioning systems.展开更多
Chromium being one of the major toxic pollutants is discharged from electroplating and chrome tanning processes and is also found in the effluents of dyes, paint pigments, manufacturing units etc. Chromium exists in a...Chromium being one of the major toxic pollutants is discharged from electroplating and chrome tanning processes and is also found in the effluents of dyes, paint pigments, manufacturing units etc. Chromium exists in aqueous systems in both trivalent (Cr 3+) and hexavalent (Cr 6+) forms. The hexavalent form is carcinogenic and toxic to aquatic life, whereas Cr 3+ is however comparatively less toxic. This study was undertaken to investigate the total chromium removal from industrial effluents by chemical means in order to achieve the Pakistan NEQS level of 1 mg/L by the methods of reduction and precipitation. The study was conducted in four phases. In phase Ⅰ, the optimum pH and cost effective reducing agent among the four popular commercial chemicals was selected. As a result, pH of 2 was found to be most suitable and sodium meta bisulfate was found to be the most cost effective reducing agent respectively. Phase Ⅱ showed that lower dose of sodium meta bisulfate was sufficient to obtain 100 % efficiency in reducing Cr 6+ to Cr 3+, and it was noted that reaction time had no significance in the whole process. A design curve for reduction process was established which can act as a tool for treatment of industrial effluents. Phase Ⅲ studies indicated the best pH was 8.5 for precipitation of Cr 3+ to chromium hydroxide by using lime. An efficiency of 100 % was achievable and a settling time of 30 minutes produced clear effluent. Finally in Phase Ⅳ actual waste samples from chrome tanning and electroplating industries, when precipitated at pH of 12 gave 100 % efficiency at a settling time of 30 minutes and confirmed that chemical means of reduction and precipitation is a feasible and viable solution for treating chromium wastes from industries.展开更多
基金supported by the National Natural Science Foundation of China(No.41771355)the Anhui Provincial Natural Science Foundation(No.1508085SMC211)the Key Project of Outstanding Young Talent Support Program in Universities of Anhui Province(No.gxyqZD2016025)
文摘Microbes play important roles in the transport and transformation of selenium(Se) in the environment, thereby influencing plant resistance to Se and Se accumulation in plant. The objectives are to characterize the bacteria with high Se tolerance and reduction capacity and explore the significance of microbial origins on their Se tolerance, reduction rate and efficiency. Two bacterial strains were isolated from a naturally occurred Se-rich soil at tea orchard in southern Anhui Province, China. The reduction kinetics of selenite was investigated and the reducing product was characterized using scanning electron microscopy and transmission electron microscopy-energy dispersive spectroscopy. The bacteria were identified as Lysinibacillus xylanilyticus and Lysinibacillus macrolides,respectively, using morphological, physiological and molecular methods. The results showed that the minimal inhibitory concentrations(MICs) of selenite for L. xylanilyticus and L. macrolides were 120 and 220 mmol/L, respectively, while MICs of selenate for L.xylanilyticus and L. macrolides were 800 and 700 mmol/L, respectively. Both strains aerobically reduced selenite with an initial concentration of 1.0 mmol/L to elemental Se nanoparticles(SeNPs) completely within 36 hr. Biogenic SeNPs were observed both inside and outside the cells suggesting either an intra-or extracellular reduction process. Our study implied that the microbes from Se-rich environments were more tolerant to Se and generally quicker and more efficient than those from Se-free habitats in the reduction of Se oxyanions. The bacterial strains with high Se reduction capacity and the biological synthesized Se NPs would have potential applications in agriculture, food, environment and medicine.
文摘On average, long-haul trucks in the U.S. use approximately 667 million gallons of fuel each year just for idling. This idling primarily facilitates climate control operations during driver rest periods. To mitigate this, our study explored ways to diminish the electrical consumption of climate control systems in class 8 trucks through innovative load reduction technologies. We utilized the CoolCalc software, developed by the National Renewable Energy Laboratory (NREL), which integrates heat transfer principles with extensive weather data from across the U.S. to mimic the environmental conditions trucks face year-round. The analysis of the CoolCalc simulations was performed using MATLAB. We assessed the impact of various technologies, including white paint, advanced curtains, and Thinsulate insulation on reducing electrical demand compared to standard conditions. Our findings indicate that trucks operating in the eastern U.S. could see electrical load reductions of up to 40%, while those in the western regions could achieve reductions as high as 55%. Such significant decreases in energy consumption mean that a 10 kWh battery system could sufficiently manage the HVAC needs of these trucks throughout the year without idling. Given that many long-haul trucks are equipped with battery systems of around 800 Ah (9.6 kWh), implementing these advanced technologies could substantially curtail the necessity for idling to power air conditioning systems.
文摘Chromium being one of the major toxic pollutants is discharged from electroplating and chrome tanning processes and is also found in the effluents of dyes, paint pigments, manufacturing units etc. Chromium exists in aqueous systems in both trivalent (Cr 3+) and hexavalent (Cr 6+) forms. The hexavalent form is carcinogenic and toxic to aquatic life, whereas Cr 3+ is however comparatively less toxic. This study was undertaken to investigate the total chromium removal from industrial effluents by chemical means in order to achieve the Pakistan NEQS level of 1 mg/L by the methods of reduction and precipitation. The study was conducted in four phases. In phase Ⅰ, the optimum pH and cost effective reducing agent among the four popular commercial chemicals was selected. As a result, pH of 2 was found to be most suitable and sodium meta bisulfate was found to be the most cost effective reducing agent respectively. Phase Ⅱ showed that lower dose of sodium meta bisulfate was sufficient to obtain 100 % efficiency in reducing Cr 6+ to Cr 3+, and it was noted that reaction time had no significance in the whole process. A design curve for reduction process was established which can act as a tool for treatment of industrial effluents. Phase Ⅲ studies indicated the best pH was 8.5 for precipitation of Cr 3+ to chromium hydroxide by using lime. An efficiency of 100 % was achievable and a settling time of 30 minutes produced clear effluent. Finally in Phase Ⅳ actual waste samples from chrome tanning and electroplating industries, when precipitated at pH of 12 gave 100 % efficiency at a settling time of 30 minutes and confirmed that chemical means of reduction and precipitation is a feasible and viable solution for treating chromium wastes from industries.