Transitional metal phosphides with array-like structure grown on conductive support materials are promising bifunctional catalysts for the oxygen evolution reaction(OER)and hydrogen evolution reaction(HER).In this stu...Transitional metal phosphides with array-like structure grown on conductive support materials are promising bifunctional catalysts for the oxygen evolution reaction(OER)and hydrogen evolution reaction(HER).In this study,a method was developed to synthesize directly porous Ni2P nanosheet arrays and Ni2P nanoparticles onto nickel foam via a hydrothermal reaction followed by a phosphorization process.Mechanistic studies revealed that the allomorphs of Ni2P nanosheets and Ni2P nanoparticles in the array-like structure were formed via the Kirkendall effect and Ostwald ripening.A fully functional water electrolyzer containing Ni2P as electrodes for the OER and HER exhibited promising activity and stability.At 10 mA·cm^−2,a Ni2P cell voltage of 1.63 V was obtained,which was only 0.05 V smaller than that found for Pt/C/NF||RuO2/NF cell.The enhanced electrocatalytic performance resulted from the favorable porosity of the Ni2P arrays and the synergistic effect between Ni2P nanosheets and Ni2P nanoparticles.展开更多
Alloying of metals is known from antiquity. Alloy making <em>i.e.</em>, homogenizing metals started in a “hit-or-miss” way. The 1</span><sup><span style="font-family:Verdana;">...Alloying of metals is known from antiquity. Alloy making <em>i.e.</em>, homogenizing metals started in a “hit-or-miss” way. The 1</span><sup><span style="font-family:Verdana;">st</span></sup><span style="font-family:Verdana;"> alloy from copper (Cu) and tin (Sn) was produced around 2500 BC and from then Bronze Age began. Subsequently iron (Fe) age started after the Bronze Age. Aluminium (Al) alloying was discovered much later because pure Al could not be recovered easily even though Al is the most abundant metal in the earth’s crust. Refining of Al is a very difficult job because of its strong affinity towards oxygen. To ease alloying, melting points (mp) of the individual constituents and reactivity of metal towards oxygen were the hurdles. Now understanding the thermodynamics of metal mixing has paved alloying. Periodic properties of elements concerning size, electronegativity, crystal structure, valency, lattice spacing, etc. are considered for alloying. In this feature article, more emphasis is given to Hume-Rothery rules in which the necessary parameters for alloying have been illustrated. Importantly standard electrode potential (E</span><sup><span style="font-family:Verdana;">0</span></sup><span style="font-family:Verdana;">) values, eutectic, phase diagram, size-related strain in metals, etc. have been looked into in the present discussion. One elegant example is Sn-Pb alloy, known as soft solder. Soft solder was in use for many years to connect metals and in electric circuitry. Low melting, flowability, and conductivity of soft solder had placed Sn-Pb alloy a unique position in industries, laboratories and even in cottage industries. However, toxic Pb volatilizes during soldering and hence soft solder is banned almost in all countries. We felt the need for a viable alternative to obtain soldering material and then silver (Ag) based highly conducting, an eco-friendly alloy of Sn resulted in from a high boiling liquid. The discovery engenders not only a new conducting soldering alloy but also a new c展开更多
The study was prospective, randomized and controlled. It includes 3 parts: (1) clinical study of hyaluronidase (HD) on cervical ripening; (2) action mechanism of HD (experimental study); and (3) effect of cervix colla...The study was prospective, randomized and controlled. It includes 3 parts: (1) clinical study of hyaluronidase (HD) on cervical ripening; (2) action mechanism of HD (experimental study); and (3) effect of cervix collagen on cervical dilatation in term labor. According to the results of preliminary study, HD was selected as ripening agent, its dosage and administration method were investigated previously.展开更多
The deactivation behavior by crystallite growth of nickel nanoparticles on various supports(carbon nanofibers, zirconia, Si C, α-Al2O3 and γ-Al2O3) was investigated in the aqueous phase reforming of ethylene glyco...The deactivation behavior by crystallite growth of nickel nanoparticles on various supports(carbon nanofibers, zirconia, Si C, α-Al2O3 and γ-Al2O3) was investigated in the aqueous phase reforming of ethylene glycol. Supported Ni catalysts of ~10 wt% were prepared by impregnation of carbon nanofibers(CNF),Zr O2, SiC, γ-Al2O3 and α-Al2O3. The extent of the Ni nanoparticle growth on various support materials follows the order CNF ~ ZrO2〉 SiC 〉 γ-Al2O3〉〉 α-Al2O3 which sequence, however, was determined by the initial Ni particle size. Based on the observed nickel leaching and the specific growth characteristics; the particle size distribution and the effect of loading on the growth rate, Ostwald ripening is suggested to be the main mechanism contributing to nickel particle growth. Remarkably, initially smaller Ni particles(~12 nm) supported on α-Al2O3 were found to outgrow Ni particles with initially larger size(~20 nm). It is put forward that the higher susceptibility with respect to oxidation of the smaller Ni nanoparticles and differences in initial particle size distribution are responsible for this behavior.展开更多
基金The authors would like to thank the National Natural Science Foundation of China(Nos.51661008 and 21766032)Key Technology Research and Development Program of Shandong(No.2019GGX103029)for financially supporting this work.
文摘Transitional metal phosphides with array-like structure grown on conductive support materials are promising bifunctional catalysts for the oxygen evolution reaction(OER)and hydrogen evolution reaction(HER).In this study,a method was developed to synthesize directly porous Ni2P nanosheet arrays and Ni2P nanoparticles onto nickel foam via a hydrothermal reaction followed by a phosphorization process.Mechanistic studies revealed that the allomorphs of Ni2P nanosheets and Ni2P nanoparticles in the array-like structure were formed via the Kirkendall effect and Ostwald ripening.A fully functional water electrolyzer containing Ni2P as electrodes for the OER and HER exhibited promising activity and stability.At 10 mA·cm^−2,a Ni2P cell voltage of 1.63 V was obtained,which was only 0.05 V smaller than that found for Pt/C/NF||RuO2/NF cell.The enhanced electrocatalytic performance resulted from the favorable porosity of the Ni2P arrays and the synergistic effect between Ni2P nanosheets and Ni2P nanoparticles.
文摘Alloying of metals is known from antiquity. Alloy making <em>i.e.</em>, homogenizing metals started in a “hit-or-miss” way. The 1</span><sup><span style="font-family:Verdana;">st</span></sup><span style="font-family:Verdana;"> alloy from copper (Cu) and tin (Sn) was produced around 2500 BC and from then Bronze Age began. Subsequently iron (Fe) age started after the Bronze Age. Aluminium (Al) alloying was discovered much later because pure Al could not be recovered easily even though Al is the most abundant metal in the earth’s crust. Refining of Al is a very difficult job because of its strong affinity towards oxygen. To ease alloying, melting points (mp) of the individual constituents and reactivity of metal towards oxygen were the hurdles. Now understanding the thermodynamics of metal mixing has paved alloying. Periodic properties of elements concerning size, electronegativity, crystal structure, valency, lattice spacing, etc. are considered for alloying. In this feature article, more emphasis is given to Hume-Rothery rules in which the necessary parameters for alloying have been illustrated. Importantly standard electrode potential (E</span><sup><span style="font-family:Verdana;">0</span></sup><span style="font-family:Verdana;">) values, eutectic, phase diagram, size-related strain in metals, etc. have been looked into in the present discussion. One elegant example is Sn-Pb alloy, known as soft solder. Soft solder was in use for many years to connect metals and in electric circuitry. Low melting, flowability, and conductivity of soft solder had placed Sn-Pb alloy a unique position in industries, laboratories and even in cottage industries. However, toxic Pb volatilizes during soldering and hence soft solder is banned almost in all countries. We felt the need for a viable alternative to obtain soldering material and then silver (Ag) based highly conducting, an eco-friendly alloy of Sn resulted in from a high boiling liquid. The discovery engenders not only a new conducting soldering alloy but also a new c
文摘The study was prospective, randomized and controlled. It includes 3 parts: (1) clinical study of hyaluronidase (HD) on cervical ripening; (2) action mechanism of HD (experimental study); and (3) effect of cervix collagen on cervical dilatation in term labor. According to the results of preliminary study, HD was selected as ripening agent, its dosage and administration method were investigated previously.
基金the support of the Smart Mix Program of The Netherlands Ministry of Economic Affairs, Agriculture and Innovation and The Netherlands Ministry of Education, Culture and Science (Grant no. 053.70.011)
文摘The deactivation behavior by crystallite growth of nickel nanoparticles on various supports(carbon nanofibers, zirconia, Si C, α-Al2O3 and γ-Al2O3) was investigated in the aqueous phase reforming of ethylene glycol. Supported Ni catalysts of ~10 wt% were prepared by impregnation of carbon nanofibers(CNF),Zr O2, SiC, γ-Al2O3 and α-Al2O3. The extent of the Ni nanoparticle growth on various support materials follows the order CNF ~ ZrO2〉 SiC 〉 γ-Al2O3〉〉 α-Al2O3 which sequence, however, was determined by the initial Ni particle size. Based on the observed nickel leaching and the specific growth characteristics; the particle size distribution and the effect of loading on the growth rate, Ostwald ripening is suggested to be the main mechanism contributing to nickel particle growth. Remarkably, initially smaller Ni particles(~12 nm) supported on α-Al2O3 were found to outgrow Ni particles with initially larger size(~20 nm). It is put forward that the higher susceptibility with respect to oxidation of the smaller Ni nanoparticles and differences in initial particle size distribution are responsible for this behavior.