It is important to study the effect of hydrate production on the physical and mechanical properties of low-permeability clayey–silty reservoirs for the largescale exploitation of hydrate reservoirs in the South China...It is important to study the effect of hydrate production on the physical and mechanical properties of low-permeability clayey–silty reservoirs for the largescale exploitation of hydrate reservoirs in the South China Sea.In this study,a multiphysical-field coupling model,combined with actual exploration drilling data and the mechanical experimental data of hydrate cores in the laboratory,was established to investigate the physical and mechanical properties of low-permeability reservoirs with different slope angles during 5-year hydrate production by the depressurization method via a horizontal well.The result shows that the permeability of reservoirs severely affects gas production rate,and the maximum gas production amount of a 20-m-long horizontal well can reach186.8 m3/day during the 5-year hydrate production.Reservoirs with smaller slope angles show higher gas production rates.The depressurization propagation and hydrate dissociation mainly develop along the direction parallel to the slope.Besides,the mean effective stress of reservoirs is concentrated in the near-wellbore area with the on-going hydrate production,and gradually decreases with the increase of the slope angle.Different from the effective stress distribution law,the total reservoir settlement amount first decreases and then increases with the increase of the slope angle.The maximum settlement of reservoirs with a 0°slope angle is up to 3.4 m,and the displacement in the near-wellbore area is as high as2.2 m after 5 years of hydrate production.It is concluded that the pore pressure drop region of low-permeability reservoirs in the South China Sea is limited,and various slope angles further lead to differences in effective stress and strain of reservoirs during hydrate production,resulting in severe uneven settlement of reservoirs.展开更多
Conventionally oil recovery factor is too low,which leaves great prospects for the application of enhanced oil recovery(EOR)methods to increase recovery factor.EOR methods are capital intensive and few are environment...Conventionally oil recovery factor is too low,which leaves great prospects for the application of enhanced oil recovery(EOR)methods to increase recovery factor.EOR methods are capital intensive and few are environmentally hazardous.So the paper discusses on the alternate enhanced oil recovery technique which has tremendous potential to curb the challenges of conventional EOR methods.Plasma pulse technology(PPT)aided EOR treatment is administered with an electric wireline conveyed plasma pulse generator tool that is run in the well and positioned alongside the perforations.Using energy stored in the generator's capacitors,a plasma arc is created that emits a tremendous amount of heat and pressure for a fraction of a second.This in turn creates a broad band of hydraulic impulse acoustic waves that are powerful enough to clean perforations and near wellbore damage.These waves continue to resonate deep into the reservoir,exciting the fluid molecules and increasing the reservoirs natural resonance to the degree that it can break larger hydrocarbon molecules to smaller one and simultaneously reducing adhesion tension which results in increased mobility of hydrocarbons.The plasma pulse technology has been successfully used on production as well as injection wells.It has been used often as a remedial procedure to increase well's productivity that has been on production for a period of time.This paper throws light on fundamentals of this advancing plasma pulse technology,contrasting it with recent EOR techniques.Effectiveness of treatment in increasing oil recovery,it's applicability to different reservoir types and results achieved so far are also covered in the paper.展开更多
基金China Postdoctoral Science Foundation,Grant/Award Number:2020M681768Natural Science Foundation of Jiangsu Province,Grant/Award Number:BK20200653+1 种基金Fundamental Research Funds for the Central Universities,Grant/Award Number:2021GJZPY15National Natural Science Foundation of China,Grant/Award Number:42106210。
文摘It is important to study the effect of hydrate production on the physical and mechanical properties of low-permeability clayey–silty reservoirs for the largescale exploitation of hydrate reservoirs in the South China Sea.In this study,a multiphysical-field coupling model,combined with actual exploration drilling data and the mechanical experimental data of hydrate cores in the laboratory,was established to investigate the physical and mechanical properties of low-permeability reservoirs with different slope angles during 5-year hydrate production by the depressurization method via a horizontal well.The result shows that the permeability of reservoirs severely affects gas production rate,and the maximum gas production amount of a 20-m-long horizontal well can reach186.8 m3/day during the 5-year hydrate production.Reservoirs with smaller slope angles show higher gas production rates.The depressurization propagation and hydrate dissociation mainly develop along the direction parallel to the slope.Besides,the mean effective stress of reservoirs is concentrated in the near-wellbore area with the on-going hydrate production,and gradually decreases with the increase of the slope angle.Different from the effective stress distribution law,the total reservoir settlement amount first decreases and then increases with the increase of the slope angle.The maximum settlement of reservoirs with a 0°slope angle is up to 3.4 m,and the displacement in the near-wellbore area is as high as2.2 m after 5 years of hydrate production.It is concluded that the pore pressure drop region of low-permeability reservoirs in the South China Sea is limited,and various slope angles further lead to differences in effective stress and strain of reservoirs during hydrate production,resulting in severe uneven settlement of reservoirs.
文摘Conventionally oil recovery factor is too low,which leaves great prospects for the application of enhanced oil recovery(EOR)methods to increase recovery factor.EOR methods are capital intensive and few are environmentally hazardous.So the paper discusses on the alternate enhanced oil recovery technique which has tremendous potential to curb the challenges of conventional EOR methods.Plasma pulse technology(PPT)aided EOR treatment is administered with an electric wireline conveyed plasma pulse generator tool that is run in the well and positioned alongside the perforations.Using energy stored in the generator's capacitors,a plasma arc is created that emits a tremendous amount of heat and pressure for a fraction of a second.This in turn creates a broad band of hydraulic impulse acoustic waves that are powerful enough to clean perforations and near wellbore damage.These waves continue to resonate deep into the reservoir,exciting the fluid molecules and increasing the reservoirs natural resonance to the degree that it can break larger hydrocarbon molecules to smaller one and simultaneously reducing adhesion tension which results in increased mobility of hydrocarbons.The plasma pulse technology has been successfully used on production as well as injection wells.It has been used often as a remedial procedure to increase well's productivity that has been on production for a period of time.This paper throws light on fundamentals of this advancing plasma pulse technology,contrasting it with recent EOR techniques.Effectiveness of treatment in increasing oil recovery,it's applicability to different reservoir types and results achieved so far are also covered in the paper.