期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Prediction of multifaceted asymmetric radiation from the edge movement in density-limit disruptive plasmas on Experimental Advanced Superconducting Tokamak using random forest
1
作者 胡文慧 侯吉磊 +8 位作者 罗正平 黄耀 陈大龙 肖炳甲 袁旗平 段艳敏 胡建生 左桂忠 李建刚 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第7期78-87,共10页
Multifaceted asymmetric radiation from the edge(MARFE) movement which can cause density limit disruption is often encountered during high density operation on many tokamaks. Therefore, identifying and predicting MARFE... Multifaceted asymmetric radiation from the edge(MARFE) movement which can cause density limit disruption is often encountered during high density operation on many tokamaks. Therefore, identifying and predicting MARFE movement is meaningful to mitigate or avoid density limit disruption for the steady-state high-density plasma operation. A machine learning method named random forest(RF) has been used to predict the MARFE movement based on the density ramp-up experiment in the 2022’s first campaign of Experimental Advanced Superconducting Tokamak(EAST). The RF model shows that besides Greenwald fraction which is the ratio of plasma density and Greenwald density limit, dβp/dt,H98and d Wmhd/dt are relatively important parameters for MARFE-movement prediction. Applying the RF model on test discharges, the test results show that the successful alarm rate for MARFE movement causing density limit disruption reaches ~ 85% with a minimum alarm time of ~ 40 ms and mean alarm time of ~ 700 ms. At the same time, the false alarm rate for non-disruptive and non-density-limit disruptive discharges can be kept below 5%. These results provide a reference to the prediction of MARFE movement in high density plasmas, which can help the avoidance or mitigation of density limit disruption in future fusion reactors. 展开更多
关键词 multifaceted asymmetric radiation from the edge(marfe)movement prediction random forest machine learning Experimental Advanced Superconducting Tokamak(EAST)
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部