The pulse energy in the ultrafast soliton fiber laser oscillators is usually limited by the well-known wave-breaking phenomenon owing to the absence era desirable real saturable absorber (SA) with high power toleran...The pulse energy in the ultrafast soliton fiber laser oscillators is usually limited by the well-known wave-breaking phenomenon owing to the absence era desirable real saturable absorber (SA) with high power tolerance and large modulation depth. Here, we report a type of microfiber-based MoTe2 SA fabricated by the magnetron-sputtering deposition (MSD) method. High-energy wave-breaking free soliton pulses were generated with pulse duration/pulse energy/average output power of 229 fs/2.14 nJ/57 mW in the 1.5 μm regime and 1.3 ps/13.8 nJ/ 212 mW in the 2 μm regime, respectively. To our knowledge, the generated soliton pulses at 1.5μm had the shortest pulse duration and the highest output power among the reported erbium-doped fiber lasers mode locked by transition metal dichalcogenides. Moreover, this was the first demonstration of a MoTe2-based SA in fiber lasers in the 2 ltm regime, and the pulse energy/output power are the highest in the reported thulium-doped fiber lasers mode locked by two-dlmensional materials. Our results suggest that a microfiber-based MoTe2 SA could be used as an excellent photonic device for ultrafast pulse generation, and the MSD technique opens a promising route to produce a high-performance SA with high power tolerance and large modulation depth, which are beneficial for high-energy wave-breaking free pulse generation.展开更多
A fluorescence polarization immunoassay (FPIA) was developed for the analysis ofaflatoxins (AFs) using an anti-aflatoxin B1 (AFB1) monoclonal antibody and a novel fluorescein-labeled AFB1 tracer. The FPIA showed...A fluorescence polarization immunoassay (FPIA) was developed for the analysis ofaflatoxins (AFs) using an anti-aflatoxin B1 (AFB1) monoclonal antibody and a novel fluorescein-labeled AFB1 tracer. The FPIA showed an IC50 value of 23.33 ng/mL with a limit of detection of 13.12 ng/mL for AFB1. The cross-reactivities of AFB1, AFB2, AFG1, AFG2, AFM1, and AFM2 with the antibody were 100%, 65.7%, 143%, 23.5%, 111.4%, and 2%, respectively. The group-specificity of anti-AFB1mAb indicated that the FPIA could potentially be used in a screening method for the detection of total AFs, albeit not AFG2 and AFM2. The total time required for analyzing 96 samples in one microplate was less than 5 rain. This study demonstrates the potential usefulness of the FPIA as a rapid and simple technique for monitoring AFs.展开更多
Flow against pipeline leakage and the pipe network sudden burst pipe to pipeline leakage flow for the application objects, an energy-efficient real-time scheduling scheme is designed extensively used in pipeline leak ...Flow against pipeline leakage and the pipe network sudden burst pipe to pipeline leakage flow for the application objects, an energy-efficient real-time scheduling scheme is designed extensively used in pipeline leak monitoring. The proposed scheme can adaptively adjust the network rate in real-time and reduce the cell loss rate, so that it can efficiently avoid the traffic congestion. The recent evolution of wireless sensor networks has yielded a demand to improve energy-efficient scheduling algorithms and energy-efficient medium access protocols. This paper proposes an energy-efficient real-time scheduling scheme that reduces power consumption and network errors on pipeline flux leak monitoring networks. The proposed scheme is based on a dynamic modulation scaling scheme which can scale the number of bits per symbol and a switching scheme which can swap the polling schedule between channels. Built on top of EDF scheduling policy, the proposed scheme enhances the power performance without violating the constraints of real-time streams. The simulation results show that the proposed scheme enhances fault-tolerance and reduces power consumption. Furthermore, that Network congestion avoidance strategy with an energy-efficient real-time scheduling scheme can efficiently improve the bandwidth utilization, TCP friendliness and reduce the packet drop rate in pipeline flux leak monitoring networks.展开更多
Black phosphorus(BP), with thickness-dependent direct energy bandgaps(0.3–2 eV), shows an enhanced nonlinear optical response at near-and mid-infrared wavelengths. In this paper, we present experimentally multilayer ...Black phosphorus(BP), with thickness-dependent direct energy bandgaps(0.3–2 eV), shows an enhanced nonlinear optical response at near-and mid-infrared wavelengths. In this paper, we present experimentally multilayer BP flakes coated on microfiber(BCM) as a saturable absorber with a modulation depth of 16% and a saturable intensity of 6.8 MW∕cm^2. After inserting BCM into an Er-doped fiber ring laser, a stable dual-wavelength Q-switched state with central wavelengths of 1542.4 nm and 1543.2 nm(with wavelength spacing as small as 0.8 nm) is obtained with the aid of two cascaded fiber Bragg gratings as a coarse wavelength selector.Moreover, single-wavelength Q-switched operation at 1542.4 nm or 1543.2 nm is also realized, which can be switched between the two wavelengths flexibly just by adjusting the intracavity birefringence. These results suggest that BP combined with the cascaded fiber gratings can provide a simple and feasible candidate for a multiwavelength fiber laser. Our fiber laser may have potential applications in terahertz generation, laser radar,and so on.展开更多
基金National Natural Science Foundation of China(NSFC)(11704260,61405126,61605122,61775146)Shenzhen Science and Technology Project(JCY20150324141711695,JCYJ20160427105041864,JSGG20160429114438287,KQJSCX20160226194031,JCYJ20160422103744090)+1 种基金Beijing University of Posts and Telecommunications(BUPT)(IPOC2015B003)Natural Science Foundation of Guangdong Province(2016A030310049,2016A030310059)
文摘The pulse energy in the ultrafast soliton fiber laser oscillators is usually limited by the well-known wave-breaking phenomenon owing to the absence era desirable real saturable absorber (SA) with high power tolerance and large modulation depth. Here, we report a type of microfiber-based MoTe2 SA fabricated by the magnetron-sputtering deposition (MSD) method. High-energy wave-breaking free soliton pulses were generated with pulse duration/pulse energy/average output power of 229 fs/2.14 nJ/57 mW in the 1.5 μm regime and 1.3 ps/13.8 nJ/ 212 mW in the 2 μm regime, respectively. To our knowledge, the generated soliton pulses at 1.5μm had the shortest pulse duration and the highest output power among the reported erbium-doped fiber lasers mode locked by transition metal dichalcogenides. Moreover, this was the first demonstration of a MoTe2-based SA in fiber lasers in the 2 ltm regime, and the pulse energy/output power are the highest in the reported thulium-doped fiber lasers mode locked by two-dlmensional materials. Our results suggest that a microfiber-based MoTe2 SA could be used as an excellent photonic device for ultrafast pulse generation, and the MSD technique opens a promising route to produce a high-performance SA with high power tolerance and large modulation depth, which are beneficial for high-energy wave-breaking free pulse generation.
基金supported by grants from the International Science&Technology Cooperation Program of China(2009DFA32330)the Special Fund for Agro-scientific Research in the Public Interest(No.201203040)
文摘A fluorescence polarization immunoassay (FPIA) was developed for the analysis ofaflatoxins (AFs) using an anti-aflatoxin B1 (AFB1) monoclonal antibody and a novel fluorescein-labeled AFB1 tracer. The FPIA showed an IC50 value of 23.33 ng/mL with a limit of detection of 13.12 ng/mL for AFB1. The cross-reactivities of AFB1, AFB2, AFG1, AFG2, AFM1, and AFM2 with the antibody were 100%, 65.7%, 143%, 23.5%, 111.4%, and 2%, respectively. The group-specificity of anti-AFB1mAb indicated that the FPIA could potentially be used in a screening method for the detection of total AFs, albeit not AFG2 and AFM2. The total time required for analyzing 96 samples in one microplate was less than 5 rain. This study demonstrates the potential usefulness of the FPIA as a rapid and simple technique for monitoring AFs.
基金Xinjiang Production and Construction Corps Industrial Technology Research Plans (Grant No. 2007GG15)the Tarim University Principal Youth Fund (Grant No. TDZKQN05002)
文摘Flow against pipeline leakage and the pipe network sudden burst pipe to pipeline leakage flow for the application objects, an energy-efficient real-time scheduling scheme is designed extensively used in pipeline leak monitoring. The proposed scheme can adaptively adjust the network rate in real-time and reduce the cell loss rate, so that it can efficiently avoid the traffic congestion. The recent evolution of wireless sensor networks has yielded a demand to improve energy-efficient scheduling algorithms and energy-efficient medium access protocols. This paper proposes an energy-efficient real-time scheduling scheme that reduces power consumption and network errors on pipeline flux leak monitoring networks. The proposed scheme is based on a dynamic modulation scaling scheme which can scale the number of bits per symbol and a switching scheme which can swap the polling schedule between channels. Built on top of EDF scheduling policy, the proposed scheme enhances the power performance without violating the constraints of real-time streams. The simulation results show that the proposed scheme enhances fault-tolerance and reduces power consumption. Furthermore, that Network congestion avoidance strategy with an energy-efficient real-time scheduling scheme can efficiently improve the bandwidth utilization, TCP friendliness and reduce the packet drop rate in pipeline flux leak monitoring networks.
基金National Natural Science Foundation of China(NSFC)(61490710,61505122,61775142)Science and Technology Planning Project of Guangdong Province(2016B050501005)+1 种基金Specialized Research Fund for the Shenzhen Strategic Emerging Industries Development(JCYJ20170412105812811)Natural Science Foundation of SZU(2017018)
文摘Black phosphorus(BP), with thickness-dependent direct energy bandgaps(0.3–2 eV), shows an enhanced nonlinear optical response at near-and mid-infrared wavelengths. In this paper, we present experimentally multilayer BP flakes coated on microfiber(BCM) as a saturable absorber with a modulation depth of 16% and a saturable intensity of 6.8 MW∕cm^2. After inserting BCM into an Er-doped fiber ring laser, a stable dual-wavelength Q-switched state with central wavelengths of 1542.4 nm and 1543.2 nm(with wavelength spacing as small as 0.8 nm) is obtained with the aid of two cascaded fiber Bragg gratings as a coarse wavelength selector.Moreover, single-wavelength Q-switched operation at 1542.4 nm or 1543.2 nm is also realized, which can be switched between the two wavelengths flexibly just by adjusting the intracavity birefringence. These results suggest that BP combined with the cascaded fiber gratings can provide a simple and feasible candidate for a multiwavelength fiber laser. Our fiber laser may have potential applications in terahertz generation, laser radar,and so on.