The Argo data are used to calculate eddy(turbulence) heat transport(EHT) in the global ocean and analyze its horizontal distribution and vertical structure.We calculate the EHT by averaging all the v ′,T ′ profi...The Argo data are used to calculate eddy(turbulence) heat transport(EHT) in the global ocean and analyze its horizontal distribution and vertical structure.We calculate the EHT by averaging all the v ′,T ′ profiles within each 2 ×2 bin.The velocity and temperature anomalies are obtained by removing their climatological values from the Argo "instantaneous" values respectively.Through the Student's t-test and an error evaluation,we obtained a total of 87% Argo bins with significant depth-integrated EHTs(D-EHTs).The results reveal a positive-and-negative alternating D-EHT pattern along the western boundary currents(WBC) and Antarctic Circumpolar Current(ACC).The zonally-integrated D-EHT(ZI-EHT) of the global ocean reaches 0.12 PW in the northern WBC band and –0.38 PW in the ACC band respectively.The strong ZI-EHT across the ACC in the global ocean is mainly caused by the southern Indian Ocean.The ZI-EHT in the above two bands accounts for a large portion of the total oceanic heat transport,which may play an important role in regulating the climate.The analysis of vertical structures of the EHT along the 35 N and 45 S section reveals that the oscillating EHT pattern can reach deep in the northern WBC regions and the Agulhas Return Current(ARC) region.It also shows that the strong EHT could reach 600 m in the WBC regions and 1 000 m in the ARC region,with the maximum mainly located between 100 and 400 m depth.The results would provide useful information for improving the parameterization scheme in models.展开更多
Vigorous mesoscale eddies and significant sea surface temperature(SST)variations are found in the northern edge of the Pacific warm pool that features large SST gradient.However,the relations between SST gradient,eddi...Vigorous mesoscale eddies and significant sea surface temperature(SST)variations are found in the northern edge of the Pacific warm pool that features large SST gradient.However,the relations between SST gradient,eddies,and SST variations in this region remain unexplored.In this study,by combining multi-altimeter sea surface height(SSH),satellite microwave SST observations and a mesoscale eddy dataset,we investigated the two-dimensional structures of SSTa(SST anomalies)in two subareas,which have different eddy characteristics and can be discriminated in the intensity of background SST gradient.The eddy characteristics of this region,focusing on their concentration to 21°N,are also described.We found that eddies can result in two distinct patterns of eddy-induced SST anomalies,with two different horizontal processes respectively.One is a monopole pattern that is caused by elevation/depression of the isopycnals,and another is a dipole pattern caused by eddy's rotation and stirring of the background SST field.In addition,contributions of both parts to the total SSTa and the SSTa variations were evaluated.The intensity of surrounding SST gradient plays an important role in shaping the SSTa structure:when SST gradient is larger,the eddy-associated SSTa pattern organizes more dipole.The distinct annual cycle in two components of SSTa is associated with the seasonal modulation of the warm pool's horizontal structure.展开更多
Large eddy simulation (LES) of low Mach num- ber compressible turbulent channel flow with spanwise wall oscillation (SWO) is carried out. The flow field is analyzed with emphases laid on the heat transport as well...Large eddy simulation (LES) of low Mach num- ber compressible turbulent channel flow with spanwise wall oscillation (SWO) is carried out. The flow field is analyzed with emphases laid on the heat transport as well as its rela- tion with momentum transport. When turbulent coherent structures are suppressed by SWO, the turbulent transports are significantly changed, however the momentum and heat transports change in the same manner, which gives the evi- dence of inherently consistent transport mechanisms between momentum and heat in turbulent boundary layers. The Reynolds analogies of all the flow cases are quite good, which confirms again the fact that the transport mechanisms of momentum and heat are consistent, which gives theoreti- cal support for controlling the wall heat flux control by using the drag reducing techniques.展开更多
利用11年高分辨率的(OGCM for the Earth Simulator,OFES)模式数据,计算南海涡致热输运(EHT),分析其时空变化特征。并利用卫星高度计数据验证OFES模式模拟南海涡致热输运的可靠性。研究结果表明,南海涡致热输运高值区主要分布在西边界流...利用11年高分辨率的(OGCM for the Earth Simulator,OFES)模式数据,计算南海涡致热输运(EHT),分析其时空变化特征。并利用卫星高度计数据验证OFES模式模拟南海涡致热输运的可靠性。研究结果表明,南海涡致热输运高值区主要分布在西边界流区,在南海北部和越南东南条带状区域,沿着中尺度涡运动路径,北部条带为向极输运,南部条带为向赤道输运,最大值达到了180MW/m。两高值区中间输运很小,沿着2500m等深线,为涡中心运动路径。南海中部涡致热输运较小。无论暖涡、冷涡,产生的致热输运均为顺时针方向。南海涡致热输运也存在明显的季节和年际变化。越南东南秋季输运最大,春冬季次之,夏季最小;南海北部则是春冬季最大,夏季最小。而在年际上,越南东南在2003、2007、2011年较大,南海北部则在2004、2007、2010年较大。展开更多
本文基于观测数据和模式产品,探讨了南海西边界流(South China Sea western boundary current,SCSwbc)区域海洋涡旋的统计特征、涡致热输运并重点探讨了两类冬季环流形态及其风场分布对它们的影响。结果表明研究区域的涡旋气候态上存在...本文基于观测数据和模式产品,探讨了南海西边界流(South China Sea western boundary current,SCSwbc)区域海洋涡旋的统计特征、涡致热输运并重点探讨了两类冬季环流形态及其风场分布对它们的影响。结果表明研究区域的涡旋气候态上存在旋转速度很强,半径较大,振幅略高于平均值的涡旋统计特征,其中气旋式涡旋(cyclonic eddy,CE)的占比约为56.8%。并且涡旋的生成和消亡主要发生在冬/春季,而涡旋的振幅、半径和旋转速度在夏/秋季发展到顶峰。年际时间尺度上,年平均经向风应力与反气旋式涡旋(anticyclonic eddy,AE)的振幅、半径、旋转速度和消亡均有较好的相关性,但与CE特征的相关性并不好。“O”型冬季环流模态下,风场和南海西边界流显著减弱,冬季环流在越南沿岸发生向东分支。涡旋在“O”模态下吸收平均流能量迅速发展,在越南沿岸东部地区产生了强的涡致热输运(eddy-induced heat transport,EHT)。同时,涡旋内部旋转速度减小且反气旋式涡旋个数减少;“U”型冬季环流模态下,情况则相反。展开更多
基金The Major Program of the National Natural Science Foundation of China under contact No.40890153The National High Tech-nology Research and Development Program of China(863 Program)under contact No.2008AA09A402
文摘The Argo data are used to calculate eddy(turbulence) heat transport(EHT) in the global ocean and analyze its horizontal distribution and vertical structure.We calculate the EHT by averaging all the v ′,T ′ profiles within each 2 ×2 bin.The velocity and temperature anomalies are obtained by removing their climatological values from the Argo "instantaneous" values respectively.Through the Student's t-test and an error evaluation,we obtained a total of 87% Argo bins with significant depth-integrated EHTs(D-EHTs).The results reveal a positive-and-negative alternating D-EHT pattern along the western boundary currents(WBC) and Antarctic Circumpolar Current(ACC).The zonally-integrated D-EHT(ZI-EHT) of the global ocean reaches 0.12 PW in the northern WBC band and –0.38 PW in the ACC band respectively.The strong ZI-EHT across the ACC in the global ocean is mainly caused by the southern Indian Ocean.The ZI-EHT in the above two bands accounts for a large portion of the total oceanic heat transport,which may play an important role in regulating the climate.The analysis of vertical structures of the EHT along the 35 N and 45 S section reveals that the oscillating EHT pattern can reach deep in the northern WBC regions and the Agulhas Return Current(ARC) region.It also shows that the strong EHT could reach 600 m in the WBC regions and 1 000 m in the ARC region,with the maximum mainly located between 100 and 400 m depth.The results would provide useful information for improving the parameterization scheme in models.
基金Supported by the National Natural Science Foundation of China(NSFC)(Nos.41606026,41730534)the Key Research Program of Frontier Sciences,Chinese Academy of Sciences(No.QYZDB-SSW-DQC030)+2 种基金the Strategic Priority Research Program of Chinese Academy of Sciences(Nos.XDA19060102,XDA11010201)the Aoshan Talents Program by the Qingdao National Laboratory for Marine Science and Technology(Nos.2017ASTCP-ES03)the Youth Program of the NSFC and CAS(Nos.Y72143101B,Y82122101L)
文摘Vigorous mesoscale eddies and significant sea surface temperature(SST)variations are found in the northern edge of the Pacific warm pool that features large SST gradient.However,the relations between SST gradient,eddies,and SST variations in this region remain unexplored.In this study,by combining multi-altimeter sea surface height(SSH),satellite microwave SST observations and a mesoscale eddy dataset,we investigated the two-dimensional structures of SSTa(SST anomalies)in two subareas,which have different eddy characteristics and can be discriminated in the intensity of background SST gradient.The eddy characteristics of this region,focusing on their concentration to 21°N,are also described.We found that eddies can result in two distinct patterns of eddy-induced SST anomalies,with two different horizontal processes respectively.One is a monopole pattern that is caused by elevation/depression of the isopycnals,and another is a dipole pattern caused by eddy's rotation and stirring of the background SST field.In addition,contributions of both parts to the total SSTa and the SSTa variations were evaluated.The intensity of surrounding SST gradient plays an important role in shaping the SSTa structure:when SST gradient is larger,the eddy-associated SSTa pattern organizes more dipole.The distinct annual cycle in two components of SSTa is associated with the seasonal modulation of the warm pool's horizontal structure.
基金supported by Key Subjects of the National Natural Science Foundation of China(10732090)the National Natural Science Foundation of China(50476004)the 111 Project (B08009)
文摘Large eddy simulation (LES) of low Mach num- ber compressible turbulent channel flow with spanwise wall oscillation (SWO) is carried out. The flow field is analyzed with emphases laid on the heat transport as well as its rela- tion with momentum transport. When turbulent coherent structures are suppressed by SWO, the turbulent transports are significantly changed, however the momentum and heat transports change in the same manner, which gives the evi- dence of inherently consistent transport mechanisms between momentum and heat in turbulent boundary layers. The Reynolds analogies of all the flow cases are quite good, which confirms again the fact that the transport mechanisms of momentum and heat are consistent, which gives theoreti- cal support for controlling the wall heat flux control by using the drag reducing techniques.
文摘利用11年高分辨率的(OGCM for the Earth Simulator,OFES)模式数据,计算南海涡致热输运(EHT),分析其时空变化特征。并利用卫星高度计数据验证OFES模式模拟南海涡致热输运的可靠性。研究结果表明,南海涡致热输运高值区主要分布在西边界流区,在南海北部和越南东南条带状区域,沿着中尺度涡运动路径,北部条带为向极输运,南部条带为向赤道输运,最大值达到了180MW/m。两高值区中间输运很小,沿着2500m等深线,为涡中心运动路径。南海中部涡致热输运较小。无论暖涡、冷涡,产生的致热输运均为顺时针方向。南海涡致热输运也存在明显的季节和年际变化。越南东南秋季输运最大,春冬季次之,夏季最小;南海北部则是春冬季最大,夏季最小。而在年际上,越南东南在2003、2007、2011年较大,南海北部则在2004、2007、2010年较大。
文摘本文基于观测数据和模式产品,探讨了南海西边界流(South China Sea western boundary current,SCSwbc)区域海洋涡旋的统计特征、涡致热输运并重点探讨了两类冬季环流形态及其风场分布对它们的影响。结果表明研究区域的涡旋气候态上存在旋转速度很强,半径较大,振幅略高于平均值的涡旋统计特征,其中气旋式涡旋(cyclonic eddy,CE)的占比约为56.8%。并且涡旋的生成和消亡主要发生在冬/春季,而涡旋的振幅、半径和旋转速度在夏/秋季发展到顶峰。年际时间尺度上,年平均经向风应力与反气旋式涡旋(anticyclonic eddy,AE)的振幅、半径、旋转速度和消亡均有较好的相关性,但与CE特征的相关性并不好。“O”型冬季环流模态下,风场和南海西边界流显著减弱,冬季环流在越南沿岸发生向东分支。涡旋在“O”模态下吸收平均流能量迅速发展,在越南沿岸东部地区产生了强的涡致热输运(eddy-induced heat transport,EHT)。同时,涡旋内部旋转速度减小且反气旋式涡旋个数减少;“U”型冬季环流模态下,情况则相反。