This study compares the atmosphere-only HighResMIP simulations from FGOALS-f3-H(FGOALS)and MRIAGCM3-2-S(MRI)with respect to tropical cyclone(TC)characteristics over the Western North Pacific(WNP)for the July-October m...This study compares the atmosphere-only HighResMIP simulations from FGOALS-f3-H(FGOALS)and MRIAGCM3-2-S(MRI)with respect to tropical cyclone(TC)characteristics over the Western North Pacific(WNP)for the July-October months of 1985-2014.The focus is on investigating the role of the tropical easterly jet over the Western Pacific(WP_TEJ)in modulating the simulation biases in terms of their climatological distribution and interannual variability of WNP TC genesis frequency(TCGF)based on the analysis of the genesis potential index(GPI).Results show that the two models reasonably capture the main TC genesis location,the maximum center of frequency,and track density;however,their biases mainly lie in simulating the intense TCs and TCGF distributions.The MRI better simulates the windpressure relationship(WPR)but overestimates the proportion of super typhoons(SSTYs).At the same time,FGOALS underestimates the WPR and the proportion of SSTYs but better simulates the total WNP TC precipitation.In particular,FGOALS overestimates the TCGF in the northeastern WNP,which is strongly tied to an overestimated WP_TEJ and the enhanced vertical circulation to the north of its entrance region.In contrast,the MRI simulates a weaker WP_TEJ and vertical circulation,leading to a negative TCGF bias in most of the WNP.Both models exhibit comparable capability in simulating the interannual variability of WP_TEJ intensity,but the composite difference of large-scale atmospheric factors between strong and weak WP_TEJ years is overestimated,resulting in larger interannual anomalies of WNP TCGF,especially for FGOALS.Therefore,accurate simulations of the WP_TEJ and the associated oceanic and atmospheric factors are crucial to further improving WNP TC simulations for both models.展开更多
2013年5月15-17日长江下游地区多地出现连续暴雨,数值模式检验显示雨量预报值误差较大。利用常规天气资料、NCEP 0.5°×0.5°格点资料和多普勒雷达资料,对这次暴雨过程进行了成因分析,结果表明:槽前西南气流、低涡切变和...2013年5月15-17日长江下游地区多地出现连续暴雨,数值模式检验显示雨量预报值误差较大。利用常规天气资料、NCEP 0.5°×0.5°格点资料和多普勒雷达资料,对这次暴雨过程进行了成因分析,结果表明:槽前西南气流、低涡切变和深厚湿层提供了有利的大尺度形势背景;低涡东北部产生的暴雨与低层东风急流的扰动和曲率增大密切相关,地面辐合抬升触发了上升运动;700 h Pa切变线和地面中小尺度辐合线的叠加处、925 h Pa水汽通量散度负值中心区都与暴雨区有较好的对应关系;多普勒雷达平均径向速度图像上显示强烈的辐合区,正、负速度区面积比达到1∶3,回波不断在辐合线处生成,下游地区出现"列车效应",强降水时段雷达回波强度为30~40d Bz,小时雨量达到16~20 mm。对比模式预报场,中低层偏东急流量级和气旋性弯曲偏小导致了暴雨区漏报,地面辐合线位置和强度的偏差造成了雨量中心位置的偏差,可通过与实况对比、雷达分析等手段对预报进行订正。展开更多
The inverse relationship between the warm phase of the El Nino Southern Oscillation(ENSO)and the Indian Summer Monsoon Rainfall(ISMR)is well established.Yet,some El Nino events that occur in the early months of the ye...The inverse relationship between the warm phase of the El Nino Southern Oscillation(ENSO)and the Indian Summer Monsoon Rainfall(ISMR)is well established.Yet,some El Nino events that occur in the early months of the year(boreal spring)transform into a neutral phase before the start of summer,whereas others begin in the boreal summer and persist in a positive phase throughout the summer monsoon season.This study investigates the distinct influences of an exhausted spring El Nino(springtime)and emerging summer El Nino(summertime)on the regional variability of ISMR.The two ENSO categories were formulated based on the time of occurrence of positive SST anomalies over the Nino-3.4 region in the Pacific.The ISMR’s dynamical and thermodynamical responses to such events were investigated using standard metrics such as the Walker and Hadley circulations,vertically integrated moisture flux convergence(VIMFC),wind shear,and upper atmospheric circulation.The monsoon circulation features are remarkably different in response to the exhausted spring El Nino and emerging summer El Nino phases,which distinctly dictate regional rainfall variability.The dynamic and thermodynamic responses reveal that exhausted spring El Nino events favor excess monsoon rainfall over eastern peninsular India and deficit rainfall over the core monsoon regions of central India.In contrast,emerging summer El Nino events negatively impact the seasonal rainfall over the country,except for a few regions along the west coast and northeast India.展开更多
利用NCEP-CFSR(National Centers for Environmental Prediction Climate Forecast System Reanalysis)再分析资料和WRF模式,研究了2008年4月孟加拉湾热带气旋Nargis的初始涡旋的形成过程。结果表明:受到印度洋赤道西风急流爆发及其伴...利用NCEP-CFSR(National Centers for Environmental Prediction Climate Forecast System Reanalysis)再分析资料和WRF模式,研究了2008年4月孟加拉湾热带气旋Nargis的初始涡旋的形成过程。结果表明:受到印度洋赤道西风急流爆发及其伴随的东传MJO事件的影响,Nargis的初始扰动生成于苏门答腊岛北部地区。另外,源于中纬度地区经南海进入孟加拉湾的东风急流(4月22—25日)对Nargis初始扰动发展到热带低压起到了重要的作用。东风急流及其携带的冷空气使得孟加拉湾东部海洋向大气输送的感热通量迅速增加,低层大气的有效位能通过非绝热加热获得能量,并向总动能转化,从而近海表涡旋性环流得到增长,Nargis初始扰动向西北移动并最终发展为热带低压。数值试验结果进一步证实了东风急流对Nargis初始涡旋生成的作用,如果没有东风急流的出现,Nargis初始扰动将不能北上发展成为热带低压。展开更多
The autumn Intertropical Convergence Zone(ITCZ)over the South China Sea(SCS)is typically held south of 10°N by prevailing northeasterly and weakening southwesterly winds.However,the ITCZ can move north,resulting ...The autumn Intertropical Convergence Zone(ITCZ)over the South China Sea(SCS)is typically held south of 10°N by prevailing northeasterly and weakening southwesterly winds.However,the ITCZ can move north,resulting in heavy rainfall in the northern SCS(NSCS).We investigate the mechanisms that drove the northward movement of the ITCZ and led to heavy non-tropical-cyclone rainfall over the NSCS in autumn of 2010.The results show that the rapid northward movement of the ITCZ on 1 and 2 October was caused by the joint influence of the equatorial easterlies(EE),southwesterly winds,and the easterly jet(EJ)in the NSCS.A high pressure center on the east side of Australia,strengthened by the quasi-biweekly oscillation and strong Walker circulation,was responsible for the EE to intensify and reach the SCS.The EE finally turned southeast and together with enhanced southwesterly winds associated with an anticyclone,pushed the ITCZ north.Meanwhile,the continental high moved east,which reduced the area of the EJ in the NSCS and made room for the ITCZ.Further regression analysis showed that the reduced area of the EJ and increased strength of the EE contributed significantly to the northward movement of the ITCZ.The enhancement of the EE preceded the northward movement of the ITCZ by six hours and pushed the ITCZ continually north.As the ITCZ approached 12°N,it not only transported warm moist air but also strengthened the dynamic field by transporting the positive vorticity horizontally and vertically which further contributed to the heavy rainfall.展开更多
The low latitude easterlies at 200 hPa in summer (May-October) is analysed climatically during the 13-year period from 1968 to 1980, with a special emphasis on the relationships between the anomalous tropical easterl... The low latitude easterlies at 200 hPa in summer (May-October) is analysed climatically during the 13-year period from 1968 to 1980, with a special emphasis on the relationships between the anomalous tropical easterly jet Stream over South Asia and the low latitude atmospheric circulation, and also the summer monsoon precipitation in India. The compositing analysis shows that the tropical easterly jet stream over South Asia has five anomalous patterns at 200 hPa i.e. the western pattern, middle pattern, eastern pattern, two-branch pattern and multi-core pattern. Evidence has shown that the precipitaion in India anomalously increased during the anomalous period of the western pattern and the middle pattern, but reverse case is true in the eastern pattern. Some different anomalies of the precipitation in different area of India were found during the other two anomalous pattern.展开更多
Although it is well known that the tropical easterly jet(TEJ)has a significant impact on summer weather and climate over India and Africa,whether the TEJ exerts an important impact on tropical cyclone(TC)activity over...Although it is well known that the tropical easterly jet(TEJ)has a significant impact on summer weather and climate over India and Africa,whether the TEJ exerts an important impact on tropical cyclone(TC)activity over the western North Pacific(WNP)remains unknown.In this study,we examined the impact of the TEJ on the interannual variability of TC genesis frequency over the WNP in the TC season(June-September)during 1980-2020.The results show a significant positive correlation between TC genesis frequency over the WNP and the jet intensity in the entrance region of the TEJ over the tropical western Pacific(in brief WP_TEJ),with a correlation coefficient as high as 0.66.The intensified WP_TEJ results in strong ageostrophic northerly winds in the entrance region and thus upper-level divergence to the north of the jet axis over the main TC genesis region in the WNP.This would lead to an increase in upward motion in the troposphere with enhanced low-level convergence,which are the most important factors to the increases in low-level vorticity,mid-level humidity and low-level eddy kinetic energy,and the decreases in sea level pressure and vertical wind shear in the region.All these changes are favorable for TC genesis over the WNP and vice versa.Further analyses indicate that the interannual variability of the WP_TEJ intensity is likely to be linked to the local diabatic heating over the Indian Ocean-western Pacific and the central Pacific El Ni?o-Southern Oscillation.展开更多
In this paper, a strong 1TCZ process and an 1TCZ - absent process during FGGE in 1979 were selected for comparison to explore how they were subject to the influence of the evolution of the upper easterly jets.
基金supported by the Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No.XDA19060102)Shanghai 2021“Scientific and technological innovation action plan”Natural Science Foundation(Grant No.21ZR1420400)+2 种基金National Natural Science Foundation of China(Grant No.91958201)International Partnership Program of Chinese Academy of Sciences Grant 183311KYSB20200015the National Natural Science Foundation for Young Scientist of China(Grant No.41605079)。
文摘This study compares the atmosphere-only HighResMIP simulations from FGOALS-f3-H(FGOALS)and MRIAGCM3-2-S(MRI)with respect to tropical cyclone(TC)characteristics over the Western North Pacific(WNP)for the July-October months of 1985-2014.The focus is on investigating the role of the tropical easterly jet over the Western Pacific(WP_TEJ)in modulating the simulation biases in terms of their climatological distribution and interannual variability of WNP TC genesis frequency(TCGF)based on the analysis of the genesis potential index(GPI).Results show that the two models reasonably capture the main TC genesis location,the maximum center of frequency,and track density;however,their biases mainly lie in simulating the intense TCs and TCGF distributions.The MRI better simulates the windpressure relationship(WPR)but overestimates the proportion of super typhoons(SSTYs).At the same time,FGOALS underestimates the WPR and the proportion of SSTYs but better simulates the total WNP TC precipitation.In particular,FGOALS overestimates the TCGF in the northeastern WNP,which is strongly tied to an overestimated WP_TEJ and the enhanced vertical circulation to the north of its entrance region.In contrast,the MRI simulates a weaker WP_TEJ and vertical circulation,leading to a negative TCGF bias in most of the WNP.Both models exhibit comparable capability in simulating the interannual variability of WP_TEJ intensity,but the composite difference of large-scale atmospheric factors between strong and weak WP_TEJ years is overestimated,resulting in larger interannual anomalies of WNP TCGF,especially for FGOALS.Therefore,accurate simulations of the WP_TEJ and the associated oceanic and atmospheric factors are crucial to further improving WNP TC simulations for both models.
文摘2013年5月15-17日长江下游地区多地出现连续暴雨,数值模式检验显示雨量预报值误差较大。利用常规天气资料、NCEP 0.5°×0.5°格点资料和多普勒雷达资料,对这次暴雨过程进行了成因分析,结果表明:槽前西南气流、低涡切变和深厚湿层提供了有利的大尺度形势背景;低涡东北部产生的暴雨与低层东风急流的扰动和曲率增大密切相关,地面辐合抬升触发了上升运动;700 h Pa切变线和地面中小尺度辐合线的叠加处、925 h Pa水汽通量散度负值中心区都与暴雨区有较好的对应关系;多普勒雷达平均径向速度图像上显示强烈的辐合区,正、负速度区面积比达到1∶3,回波不断在辐合线处生成,下游地区出现"列车效应",强降水时段雷达回波强度为30~40d Bz,小时雨量达到16~20 mm。对比模式预报场,中低层偏东急流量级和气旋性弯曲偏小导致了暴雨区漏报,地面辐合线位置和强度的偏差造成了雨量中心位置的偏差,可通过与实况对比、雷达分析等手段对预报进行订正。
基金funding support from the National Monsoon Mission program of the Ministry of Earth Sciences(MoES),New Delhi。
文摘The inverse relationship between the warm phase of the El Nino Southern Oscillation(ENSO)and the Indian Summer Monsoon Rainfall(ISMR)is well established.Yet,some El Nino events that occur in the early months of the year(boreal spring)transform into a neutral phase before the start of summer,whereas others begin in the boreal summer and persist in a positive phase throughout the summer monsoon season.This study investigates the distinct influences of an exhausted spring El Nino(springtime)and emerging summer El Nino(summertime)on the regional variability of ISMR.The two ENSO categories were formulated based on the time of occurrence of positive SST anomalies over the Nino-3.4 region in the Pacific.The ISMR’s dynamical and thermodynamical responses to such events were investigated using standard metrics such as the Walker and Hadley circulations,vertically integrated moisture flux convergence(VIMFC),wind shear,and upper atmospheric circulation.The monsoon circulation features are remarkably different in response to the exhausted spring El Nino and emerging summer El Nino phases,which distinctly dictate regional rainfall variability.The dynamic and thermodynamic responses reveal that exhausted spring El Nino events favor excess monsoon rainfall over eastern peninsular India and deficit rainfall over the core monsoon regions of central India.In contrast,emerging summer El Nino events negatively impact the seasonal rainfall over the country,except for a few regions along the west coast and northeast India.
文摘利用NCEP-CFSR(National Centers for Environmental Prediction Climate Forecast System Reanalysis)再分析资料和WRF模式,研究了2008年4月孟加拉湾热带气旋Nargis的初始涡旋的形成过程。结果表明:受到印度洋赤道西风急流爆发及其伴随的东传MJO事件的影响,Nargis的初始扰动生成于苏门答腊岛北部地区。另外,源于中纬度地区经南海进入孟加拉湾的东风急流(4月22—25日)对Nargis初始扰动发展到热带低压起到了重要的作用。东风急流及其携带的冷空气使得孟加拉湾东部海洋向大气输送的感热通量迅速增加,低层大气的有效位能通过非绝热加热获得能量,并向总动能转化,从而近海表涡旋性环流得到增长,Nargis初始扰动向西北移动并最终发展为热带低压。数值试验结果进一步证实了东风急流对Nargis初始涡旋生成的作用,如果没有东风急流的出现,Nargis初始扰动将不能北上发展成为热带低压。
基金The research is supported by the Key Laboratory of South China Sea Meteorological Disaster Prevention and Mitigation of Hainan Province(Grant No.SCSF201906)the National Natural Science Foundation of China(Grant No.41975008)the Fundamental Research Funds for the Central Universities(Grant No.201861003).
文摘The autumn Intertropical Convergence Zone(ITCZ)over the South China Sea(SCS)is typically held south of 10°N by prevailing northeasterly and weakening southwesterly winds.However,the ITCZ can move north,resulting in heavy rainfall in the northern SCS(NSCS).We investigate the mechanisms that drove the northward movement of the ITCZ and led to heavy non-tropical-cyclone rainfall over the NSCS in autumn of 2010.The results show that the rapid northward movement of the ITCZ on 1 and 2 October was caused by the joint influence of the equatorial easterlies(EE),southwesterly winds,and the easterly jet(EJ)in the NSCS.A high pressure center on the east side of Australia,strengthened by the quasi-biweekly oscillation and strong Walker circulation,was responsible for the EE to intensify and reach the SCS.The EE finally turned southeast and together with enhanced southwesterly winds associated with an anticyclone,pushed the ITCZ north.Meanwhile,the continental high moved east,which reduced the area of the EJ in the NSCS and made room for the ITCZ.Further regression analysis showed that the reduced area of the EJ and increased strength of the EE contributed significantly to the northward movement of the ITCZ.The enhancement of the EE preceded the northward movement of the ITCZ by six hours and pushed the ITCZ continually north.As the ITCZ approached 12°N,it not only transported warm moist air but also strengthened the dynamic field by transporting the positive vorticity horizontally and vertically which further contributed to the heavy rainfall.
文摘 The low latitude easterlies at 200 hPa in summer (May-October) is analysed climatically during the 13-year period from 1968 to 1980, with a special emphasis on the relationships between the anomalous tropical easterly jet Stream over South Asia and the low latitude atmospheric circulation, and also the summer monsoon precipitation in India. The compositing analysis shows that the tropical easterly jet stream over South Asia has five anomalous patterns at 200 hPa i.e. the western pattern, middle pattern, eastern pattern, two-branch pattern and multi-core pattern. Evidence has shown that the precipitaion in India anomalously increased during the anomalous period of the western pattern and the middle pattern, but reverse case is true in the eastern pattern. Some different anomalies of the precipitation in different area of India were found during the other two anomalous pattern.
基金supported by the Guangdong Major Project of Basic and Applied Basic Research(Grant No.2020B0301030004)the National Natural Science Foundation of China(Grant Nos.42075015,41775060,41875114)+1 种基金the Science and Technology Commission of Shanghai MunicipalityChina(Grant No.20dz1200700)。
文摘Although it is well known that the tropical easterly jet(TEJ)has a significant impact on summer weather and climate over India and Africa,whether the TEJ exerts an important impact on tropical cyclone(TC)activity over the western North Pacific(WNP)remains unknown.In this study,we examined the impact of the TEJ on the interannual variability of TC genesis frequency over the WNP in the TC season(June-September)during 1980-2020.The results show a significant positive correlation between TC genesis frequency over the WNP and the jet intensity in the entrance region of the TEJ over the tropical western Pacific(in brief WP_TEJ),with a correlation coefficient as high as 0.66.The intensified WP_TEJ results in strong ageostrophic northerly winds in the entrance region and thus upper-level divergence to the north of the jet axis over the main TC genesis region in the WNP.This would lead to an increase in upward motion in the troposphere with enhanced low-level convergence,which are the most important factors to the increases in low-level vorticity,mid-level humidity and low-level eddy kinetic energy,and the decreases in sea level pressure and vertical wind shear in the region.All these changes are favorable for TC genesis over the WNP and vice versa.Further analyses indicate that the interannual variability of the WP_TEJ intensity is likely to be linked to the local diabatic heating over the Indian Ocean-western Pacific and the central Pacific El Ni?o-Southern Oscillation.
文摘In this paper, a strong 1TCZ process and an 1TCZ - absent process during FGGE in 1979 were selected for comparison to explore how they were subject to the influence of the evolution of the upper easterly jets.