Characterization of genes related to sweetpotato viral disease resistance is critical for understanding plant-pathogen interactions, especially with feathery mottle virus infection. For example, genes encoding eukaryo...Characterization of genes related to sweetpotato viral disease resistance is critical for understanding plant-pathogen interactions, especially with feathery mottle virus infection. For example, genes encoding eukaryotic translation initiation factor (eIF)4E, its isoforms, eIF(iso)4E, and the cap-binding protein (CBP) in plants, have been implicated in viral infections aside from their importance in protein synthesis. Full-length cDNA encoding these putative eIF targets from susceptible/resistant and unknown hexaploid sweetpotato (Ipomoea batatas L. Lam) were amplified based on primers designed from the diploid wild-type relative Ipomoea trifida consensus sequences, and designated IbeIF4E, IbeIF(iso)4E and IbCBP. Comparative analyses following direct-sequencing of PCR-amplified cDNAs versus the cloned cDNA sequences identified multiple homeoalleles: one to four IbeIF4E, two to three IbeIF(iso)4E, and two IbCBP within all cultivars tested. Open reading frames were in the length of 696 bp IbeIF4E, 606 bp IbeIF(iso)4E, and 675 bp IbCBP. The encoded single polypeptide lengths were 232, 202, and 225 amino acids for IbeIF4E, IbeIF(iso)4E, and IbCBP, with a calculated protein molecular mass of 26 kDa, 22.8 kDa, and 25.8 kDa, while their theoretical isoelectric points were 5.1, 5.57, and 6.6, respectively. Although the homeoalleles had similar sequence lengths, single nucleotide polymorphisms and multi-allelic variations were detected within the coding sequences. The multi-sequence alignment performed revealed a 66.9% - 96.7% sequence similarity between the predicted amino acid sequences obtained from the homeoalleles and closely related species. Furthermore, phylogenetic analysis revealed ancestral relationships between the eIF4E homeoalleles and other species. The outcome herein on the eIF4E superfamily and its correlation in sequence variations suggest opportunities to decipher the role of eIF4E in hexaploid sweetpotato feathery mottle virus infection.展开更多
Turnip mosaic virus(TuMV)constitutes one of the primary diseases affecting Brassica rapa,severely impacting its production and resulting in crop failures in various regions worldwide.Recent research has demonstrated t...Turnip mosaic virus(TuMV)constitutes one of the primary diseases affecting Brassica rapa,severely impacting its production and resulting in crop failures in various regions worldwide.Recent research has demonstrated the significance of plant translation initiation factors,specifically the eIF4E and eIF4G family genes,as essential recessive disease resistance genes.In our study,we conducted evolutionary and gene expression studies,leading us to identify e IF(iso)4E.c as a potential TuMV-resistant gene.Leveraging CRISPR/Cas9 technology,we obtained mutant B.rapa plants with edited eIF(iso)4E.c gene.We confirmed eIF(iso)4E.c confers resistance against TuMV through phenotypic observations and virus content evaluations.Furthermore,we employed ribosome profiling assays on eif(iso)4e.c mutant seedlings to unravel the translation landscape in response to TuMV.Interestingly,we observed a moderate correlation between the fold changes in gene expression at the transcriptional and translational levels(R^(2)=0.729).Comparative analysis of ribosome profiling and RNA-seq data revealed that plant-pathogen interaction,and MAPK signaling pathway-plant pathways were involved in eIF(iso)4E.c-mediated TuMV resistance.Further analysis revealed that sequence features,coding sequence length,and normalized minimal free energy,influenced the translation efficiency of genes.Our study highlights that the loss of e IF(iso)4E.c can result in a highly intricate translation mechanism,acting synergistically with transcription to confer resistance against TuMV.展开更多
文摘Characterization of genes related to sweetpotato viral disease resistance is critical for understanding plant-pathogen interactions, especially with feathery mottle virus infection. For example, genes encoding eukaryotic translation initiation factor (eIF)4E, its isoforms, eIF(iso)4E, and the cap-binding protein (CBP) in plants, have been implicated in viral infections aside from their importance in protein synthesis. Full-length cDNA encoding these putative eIF targets from susceptible/resistant and unknown hexaploid sweetpotato (Ipomoea batatas L. Lam) were amplified based on primers designed from the diploid wild-type relative Ipomoea trifida consensus sequences, and designated IbeIF4E, IbeIF(iso)4E and IbCBP. Comparative analyses following direct-sequencing of PCR-amplified cDNAs versus the cloned cDNA sequences identified multiple homeoalleles: one to four IbeIF4E, two to three IbeIF(iso)4E, and two IbCBP within all cultivars tested. Open reading frames were in the length of 696 bp IbeIF4E, 606 bp IbeIF(iso)4E, and 675 bp IbCBP. The encoded single polypeptide lengths were 232, 202, and 225 amino acids for IbeIF4E, IbeIF(iso)4E, and IbCBP, with a calculated protein molecular mass of 26 kDa, 22.8 kDa, and 25.8 kDa, while their theoretical isoelectric points were 5.1, 5.57, and 6.6, respectively. Although the homeoalleles had similar sequence lengths, single nucleotide polymorphisms and multi-allelic variations were detected within the coding sequences. The multi-sequence alignment performed revealed a 66.9% - 96.7% sequence similarity between the predicted amino acid sequences obtained from the homeoalleles and closely related species. Furthermore, phylogenetic analysis revealed ancestral relationships between the eIF4E homeoalleles and other species. The outcome herein on the eIF4E superfamily and its correlation in sequence variations suggest opportunities to decipher the role of eIF4E in hexaploid sweetpotato feathery mottle virus infection.
基金supported by grants from the Scientist Training Program of BAAFS (Grant No.JKZX202406)the Innovation and Capacity-Building Project of BAAFS (Grant No.KJCX20230221)+2 种基金Collaborative innovation program of the Beijing Vegetable Research Center (Grant No.XTCX202302)the National Natural Science Foundation of China (Grant No.32072567)the China Agriculture Research System of MOF and MARA (Grant No.CARS-A03)。
文摘Turnip mosaic virus(TuMV)constitutes one of the primary diseases affecting Brassica rapa,severely impacting its production and resulting in crop failures in various regions worldwide.Recent research has demonstrated the significance of plant translation initiation factors,specifically the eIF4E and eIF4G family genes,as essential recessive disease resistance genes.In our study,we conducted evolutionary and gene expression studies,leading us to identify e IF(iso)4E.c as a potential TuMV-resistant gene.Leveraging CRISPR/Cas9 technology,we obtained mutant B.rapa plants with edited eIF(iso)4E.c gene.We confirmed eIF(iso)4E.c confers resistance against TuMV through phenotypic observations and virus content evaluations.Furthermore,we employed ribosome profiling assays on eif(iso)4e.c mutant seedlings to unravel the translation landscape in response to TuMV.Interestingly,we observed a moderate correlation between the fold changes in gene expression at the transcriptional and translational levels(R^(2)=0.729).Comparative analysis of ribosome profiling and RNA-seq data revealed that plant-pathogen interaction,and MAPK signaling pathway-plant pathways were involved in eIF(iso)4E.c-mediated TuMV resistance.Further analysis revealed that sequence features,coding sequence length,and normalized minimal free energy,influenced the translation efficiency of genes.Our study highlights that the loss of e IF(iso)4E.c can result in a highly intricate translation mechanism,acting synergistically with transcription to confer resistance against TuMV.