A fully discrete finite difference scheme for dissipative Zakharov equations is analyzed. On the basis of a series of the time-uniform priori estimates of the difference solutions, the stability of the difference sche...A fully discrete finite difference scheme for dissipative Zakharov equations is analyzed. On the basis of a series of the time-uniform priori estimates of the difference solutions, the stability of the difference scheme and the error bounds of optimal order of the difference solutions are obtained in L^2 × H^1 × H^2 over a finite time interval (0, T]. Finally, the existence of a global attractor is proved for a discrete dynamical system associated with the fully discrete finite difference scheme.展开更多
Normal form theory is a very effective method when we study degenerate bifurcations of nonlinear dynamical systems. In this paper by using adjoint operator method, normal forms of order 3 and 4 for nonlinear dynamical...Normal form theory is a very effective method when we study degenerate bifurcations of nonlinear dynamical systems. In this paper by using adjoint operator method, normal forms of order 3 and 4 for nonlinear dynamical system with nilpotent linear part and Z(2)-asymmetry are computed. According to normal forms obtained, universal unfoldings for some degenerate bifurcation cases of codimension 3 and simple global characterizations, are studied.展开更多
Two new methods, the generalized Levy method and the weighted iteration method, are presented for identification of non-integer order systems. The first method generalizes the Levy identification method from the integ...Two new methods, the generalized Levy method and the weighted iteration method, are presented for identification of non-integer order systems. The first method generalizes the Levy identification method from the integer order systems to the non-integer order systems. Then, the weighted iteration method is presented to overcome the shortcomings of the first method. Results show that the proposed methods have better performance compared with the integer order identification method. For the non-integer order systems, the proposed methods have the better fitting for the system frequency response. For the integer order system, if commensurate order scanning is applied, the proposed methods can also achieve the best integer order model which fits the system frequency response. At the same time, the proposed algorithms are more stable.展开更多
In the fields of oceanography,hydrodynamics,and marine engineering,many mathematicians and physi-cists are interested in Burgers-type equations to show the different dynamics of nonlinear wave phenom-ena,one of which ...In the fields of oceanography,hydrodynamics,and marine engineering,many mathematicians and physi-cists are interested in Burgers-type equations to show the different dynamics of nonlinear wave phenom-ena,one of which is a(3+1)-dimensional Burgers system that is currently being studied.In this paper,we apply two different analytical methods,namely the generalized Kudryashov(GK)method,and the generalized exponential rational function method,to derive abundant novel analytic exact solitary wave solutions,including multi-wave solitons,multi-wave peakon solitons,kink-wave profiles,stripe solitons,wave-wave interaction profiles,and periodic oscillating wave profiles for a(3+1)-dimensional Burgers sys-tem with the assistance of symbolic computation.By employing the generalized Kudryashov method,we obtain some new families of exact solitary wave solutions for the Burgers system.Further,we applied the generalized exponential rational function method to obtain a large number of soliton solutions in the forms of trigonometric and hyperbolic function solutions,exponential rational function solutions,peri-odic breather-wave soliton solutions,dark and bright solitons,singular periodic oscillating wave soliton solutions,and complex multi-wave solutions under various family cases.Based on soft computing via Wolfram Mathematica,all the newly established solutions are verified by back substituting them into the considered Burgers system.Eventually,the dynamical behaviors of some established results are exhibited graphically through three-and two-dimensional wave profiles via numerical simulation.展开更多
基金Supported by the National Natural Science Foundation of China(10371077)
文摘A fully discrete finite difference scheme for dissipative Zakharov equations is analyzed. On the basis of a series of the time-uniform priori estimates of the difference solutions, the stability of the difference scheme and the error bounds of optimal order of the difference solutions are obtained in L^2 × H^1 × H^2 over a finite time interval (0, T]. Finally, the existence of a global attractor is proved for a discrete dynamical system associated with the fully discrete finite difference scheme.
文摘Normal form theory is a very effective method when we study degenerate bifurcations of nonlinear dynamical systems. In this paper by using adjoint operator method, normal forms of order 3 and 4 for nonlinear dynamical system with nilpotent linear part and Z(2)-asymmetry are computed. According to normal forms obtained, universal unfoldings for some degenerate bifurcation cases of codimension 3 and simple global characterizations, are studied.
文摘Two new methods, the generalized Levy method and the weighted iteration method, are presented for identification of non-integer order systems. The first method generalizes the Levy identification method from the integer order systems to the non-integer order systems. Then, the weighted iteration method is presented to overcome the shortcomings of the first method. Results show that the proposed methods have better performance compared with the integer order identification method. For the non-integer order systems, the proposed methods have the better fitting for the system frequency response. For the integer order system, if commensurate order scanning is applied, the proposed methods can also achieve the best integer order model which fits the system frequency response. At the same time, the proposed algorithms are more stable.
基金supported and funded by SERB-DST,India,under project scheme EEQ/2020/000238.
文摘In the fields of oceanography,hydrodynamics,and marine engineering,many mathematicians and physi-cists are interested in Burgers-type equations to show the different dynamics of nonlinear wave phenom-ena,one of which is a(3+1)-dimensional Burgers system that is currently being studied.In this paper,we apply two different analytical methods,namely the generalized Kudryashov(GK)method,and the generalized exponential rational function method,to derive abundant novel analytic exact solitary wave solutions,including multi-wave solitons,multi-wave peakon solitons,kink-wave profiles,stripe solitons,wave-wave interaction profiles,and periodic oscillating wave profiles for a(3+1)-dimensional Burgers sys-tem with the assistance of symbolic computation.By employing the generalized Kudryashov method,we obtain some new families of exact solitary wave solutions for the Burgers system.Further,we applied the generalized exponential rational function method to obtain a large number of soliton solutions in the forms of trigonometric and hyperbolic function solutions,exponential rational function solutions,peri-odic breather-wave soliton solutions,dark and bright solitons,singular periodic oscillating wave soliton solutions,and complex multi-wave solutions under various family cases.Based on soft computing via Wolfram Mathematica,all the newly established solutions are verified by back substituting them into the considered Burgers system.Eventually,the dynamical behaviors of some established results are exhibited graphically through three-and two-dimensional wave profiles via numerical simulation.