当齿轮发生故障时,时变啮合刚度的变化能够反映齿轮故障特征大小。因此,时变啮合刚度在齿轮传动过程中是一个重要的动力学参数。提出一种新的齿根裂纹啮合刚度计算方法,即解析有限元法(Analytical-finite element method, A-FM)。考虑...当齿轮发生故障时,时变啮合刚度的变化能够反映齿轮故障特征大小。因此,时变啮合刚度在齿轮传动过程中是一个重要的动力学参数。提出一种新的齿根裂纹啮合刚度计算方法,即解析有限元法(Analytical-finite element method, A-FM)。考虑到齿轮发生故障时,啮合刚度解析模型计算精度较低,将应力强度因子引入裂纹齿轮的啮合刚度计算过程。首先定义应力强度因子与啮合刚度之间的关系,通过建立齿轮接触模型计算裂纹尖端附近的应力强度因子,然后将计算结果替代解析模型中故障刚度部分。由于应力强度因子能够敏感地识别齿根裂纹的局部微小变化,故该方法相比于解析法具有更高的计算精度,相比于有限元法具备更快的计算效率。同时,建立6自由度动力学模型,通过对其振动响应进行分析,仿真结果验证了所提方法的可行性。展开更多
Total dynamics of an airship is modeled. The body of an airship is taken as a submerged rigid body with neutral buoyancy, i. e. , buoyancy with value equal to that of gravity, and the coupled dynamics between the body...Total dynamics of an airship is modeled. The body of an airship is taken as a submerged rigid body with neutral buoyancy, i. e. , buoyancy with value equal to that of gravity, and the coupled dynamics between the body with ballonets and ballast is considered. The total dynamics of the airship is firstly derived by Newton-Euler laws and Kirchhoff' s equations. Furthermore, by using Hamiltonian and Lagrangian semidirect product reduction theories, the dynamics is formulated as a Lie-Poisson system, or also an Euler-Poincare system. These two formulations can be exploited for the control design using energy-based methods for Hamiltonian or Lagrangian system.展开更多
文摘当齿轮发生故障时,时变啮合刚度的变化能够反映齿轮故障特征大小。因此,时变啮合刚度在齿轮传动过程中是一个重要的动力学参数。提出一种新的齿根裂纹啮合刚度计算方法,即解析有限元法(Analytical-finite element method, A-FM)。考虑到齿轮发生故障时,啮合刚度解析模型计算精度较低,将应力强度因子引入裂纹齿轮的啮合刚度计算过程。首先定义应力强度因子与啮合刚度之间的关系,通过建立齿轮接触模型计算裂纹尖端附近的应力强度因子,然后将计算结果替代解析模型中故障刚度部分。由于应力强度因子能够敏感地识别齿根裂纹的局部微小变化,故该方法相比于解析法具有更高的计算精度,相比于有限元法具备更快的计算效率。同时,建立6自由度动力学模型,通过对其振动响应进行分析,仿真结果验证了所提方法的可行性。
文摘Total dynamics of an airship is modeled. The body of an airship is taken as a submerged rigid body with neutral buoyancy, i. e. , buoyancy with value equal to that of gravity, and the coupled dynamics between the body with ballonets and ballast is considered. The total dynamics of the airship is firstly derived by Newton-Euler laws and Kirchhoff' s equations. Furthermore, by using Hamiltonian and Lagrangian semidirect product reduction theories, the dynamics is formulated as a Lie-Poisson system, or also an Euler-Poincare system. These two formulations can be exploited for the control design using energy-based methods for Hamiltonian or Lagrangian system.