采用基于动态规划方法的动态时间归正技术DTW(D YNAM IC T IM E W ARP ING),可成功解决语音信号特征参数序列比较时时长不等的问题.在基于DTW的特征匹配用改进的动态时间归正方法将模板特征序列和语音特征序列进行匹配的基础上,比较两...采用基于动态规划方法的动态时间归正技术DTW(D YNAM IC T IM E W ARP ING),可成功解决语音信号特征参数序列比较时时长不等的问题.在基于DTW的特征匹配用改进的动态时间归正方法将模板特征序列和语音特征序列进行匹配的基础上,比较两者之间的失真,得出识别判决的依据.实验表明,改进后的算法在孤立词语音识别中获得了良好性能.展开更多
针对传统的轨迹相似度计算方法无法区分现实采集到的轨迹中由噪声带来的差异和真实的不相似部分的问题,基于动态时间规整(dynamic time warping,简称DTW)算法,提出了一种改进的轨迹相似度的计算方法。并对最后的结果进行了归一化处理,...针对传统的轨迹相似度计算方法无法区分现实采集到的轨迹中由噪声带来的差异和真实的不相似部分的问题,基于动态时间规整(dynamic time warping,简称DTW)算法,提出了一种改进的轨迹相似度的计算方法。并对最后的结果进行了归一化处理,便于人们直观理解,同时也可用于对多对轨迹之间的相似性进行排序,从而可以在数据挖掘的相关应用中得到有效利用,同时对计算过程也进行了优化。在现实采集到的数据上的测试表明这种方法对噪声和异常点是鲁棒的,对轨迹的采样频率等参数没有任何要求,而且可以适用于仅获得轨迹的部分片段的情况,并且在区分轨迹的相似和不相似部分方面较之前的方法准确度有了很大提升,即使轨迹的采样较为稀疏的前提下依然如此。展开更多
为了进一步改善和提高基于模式的时间序列趋势相似性度量效果,在时间序列分段线性表示的基础上,依据分段子序列的均值及其线性拟合函数的导数符号,实现时间序列的分段模式化,以模式之间的异同性定义模式匹配距离,借鉴动态时间弯曲(Dynam...为了进一步改善和提高基于模式的时间序列趋势相似性度量效果,在时间序列分段线性表示的基础上,依据分段子序列的均值及其线性拟合函数的导数符号,实现时间序列的分段模式化,以模式之间的异同性定义模式匹配距离,借鉴动态时间弯曲(Dynamic Time Warping,DTW)的动态规划原理,提出一种动态模式匹配方法(Dynamic Pattern Matching,DPM)。实验结果表明,该方法能够在不同压缩率条件下,准确度量等长时间序列的趋势相似性,而且时间消耗较低。时间序列不等长作为存在数据缺失的一种表现形式,该方法的度量效果与数据缺失比例之间的关系值得进一步的深入研究。展开更多
文摘采用基于动态规划方法的动态时间归正技术DTW(D YNAM IC T IM E W ARP ING),可成功解决语音信号特征参数序列比较时时长不等的问题.在基于DTW的特征匹配用改进的动态时间归正方法将模板特征序列和语音特征序列进行匹配的基础上,比较两者之间的失真,得出识别判决的依据.实验表明,改进后的算法在孤立词语音识别中获得了良好性能.
文摘针对传统的轨迹相似度计算方法无法区分现实采集到的轨迹中由噪声带来的差异和真实的不相似部分的问题,基于动态时间规整(dynamic time warping,简称DTW)算法,提出了一种改进的轨迹相似度的计算方法。并对最后的结果进行了归一化处理,便于人们直观理解,同时也可用于对多对轨迹之间的相似性进行排序,从而可以在数据挖掘的相关应用中得到有效利用,同时对计算过程也进行了优化。在现实采集到的数据上的测试表明这种方法对噪声和异常点是鲁棒的,对轨迹的采样频率等参数没有任何要求,而且可以适用于仅获得轨迹的部分片段的情况,并且在区分轨迹的相似和不相似部分方面较之前的方法准确度有了很大提升,即使轨迹的采样较为稀疏的前提下依然如此。
文摘为了进一步改善和提高基于模式的时间序列趋势相似性度量效果,在时间序列分段线性表示的基础上,依据分段子序列的均值及其线性拟合函数的导数符号,实现时间序列的分段模式化,以模式之间的异同性定义模式匹配距离,借鉴动态时间弯曲(Dynamic Time Warping,DTW)的动态规划原理,提出一种动态模式匹配方法(Dynamic Pattern Matching,DPM)。实验结果表明,该方法能够在不同压缩率条件下,准确度量等长时间序列的趋势相似性,而且时间消耗较低。时间序列不等长作为存在数据缺失的一种表现形式,该方法的度量效果与数据缺失比例之间的关系值得进一步的深入研究。